

# AI IoT Advanced Control Edge Computing

ECS-SRIA workshop 18/05/2021 Marco Ceccarelli DG CONNECT European Commission

# **EC** ambition



"In the global race for technological power, Europe will lead if we seize the opportunities of data, microelectronics and connectivity...

Without an **autonomous European capacity on microelectronics**, there will be no European **digital sovereignty**."

"By 2025, 80% of data will be generated and processed at the Edge...

The vast majority of data will not be created by us humans, but by objects and machines – the *Internet of Things*.

...this is a **huge potential source of growth** for Europe, which has the largest industrial market in the world, with leading players, particularly in the 4.0 industry'

**Thierry Breton** – EC Commissioner for Internal Market



## AI, IoT, edge – trends and opportunities



- EU strengths in embedded, low-power, real-time => Edge computing is top strategic priority
- <u>Domain-specific architectures</u> for best performance/power Multifunctional integration (connectivity, sensing) - Invest in modular designs (<u>chiplets</u>), 3D/ <u>heterogeneous integration</u>
- IoT exponential growth, with 5G/6G / heterogeneous networks, getting smarter (AIoT)
- Proliferation of **AI**:
  - Fastest growing HW segment (40-80% CAGR), capturing 50% of system value; ML+ inference
  - EU has competences but lagging behind, must act fast to capture window of opportunity
- HW/SW co-design domain-specific software and algorithms
- <u>Architecture</u>: ARM solid for RT/HPC, RISC-V gaining ground from IoT, offering flexibility
- <u>New computation models</u> in-memory, analog, neuromorphic, photonics, quantum

#### **Digital Design & IP**

- EU must reduce vulnerabilities in **digital** domain, by developing **IP** and design capabilities:
  - **Grow competences** where EU is strong (automotive, industrial) with <u>leadership</u> ambitions (e.g. autonomous driving chips)
  - Address opportunities where EU has strong potential and critical gaps communications, edge computing/ AI, data infrastructure; ultra-low power, accelerators, photonics...
  - Establish a common EU IP platform for open-source ecosystem (<u>RISC-V</u> cores, extensions, transversal elements, verification tools, interfaces, libraries, EDA)

| Vertical                                       | Entry-level                                              | Mid-range                                                                                    | High-end / Al                                                            |
|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Automotive                                     | Embedded controllers, ultra-low power                    | Real-time / safety-critical: Vision, motion control, engine management, safety, infotainment | ADAS/autonomous driving processors, sensor fusion                        |
| Industrial automation                          | Embedded controllers: ultra-low power, smart sensing     | Embedded processors, sensor fusion;<br>edge-cloud management                                 | High-performance processors with AI acceleration, edge server processors |
| Communication                                  | Baseband connectivity for wireless communication 5G/6G   | Edge server processors, 5G/6G private networks, RF mgmt                                      | 5G/6G Base station front-end processors, V-RAN                           |
| Data infrastructure                            |                                                          | Edge AI node processor                                                                       | Processors for edge/fog servers; CPUs and accelerators (servers, HPC)    |
| Other (Healthcare, CE,<br>Defence, Aerospace…) | Embedded controllers in wearables and healthcare devices | Embedded processors                                                                          | High-end Processors, AI                                                  |

European Commission

### **Industrial Strategy**



- Update 2021 EC analysis of strategic dependencies shows challenges in advanced technologies such as microelectronics, cloud and edge computing
  - Recommendation: reinforce processors and semiconductor technology for data processing, communication and related data infrastructure, and new applications of AI
- **Toolbox** to reduce and prevent strategic dependencies:
  - EU Alliance on processors and semiconductor technologies
  - Pursue international partnerships
  - Instruments: IPCEI, RRF, InvestEU, Pact for Skills
- **Digital Compass -** objectives for EU's digital decade (by 2030):
  - 20% of world production of energy-efficient (10x) processors Main R&I instrument: KDT JU, coordination through European alliance
  - 10,000 climate-neutral, highly secure, low-latency edge nodes



#### **EC Member States Declaration** on Processors and semiconductor technologies

December 2020, signed so far by **21 Member States** who agreed to:

• Mobilize industrial stakeholders through a future Industrial Alliance



- To establish strategic roadmaps and R&I plans for processor design, deployment and fabrication
- Address common challenges through various funding mechanisms, including where feasible through the national Recovery & Resilience plans
- Design a multi-country project through the development of a proposal for an Important Project of Common European Interest (IPCEI)
- Focus on processors for AI, data processing and communication (5G/6G), edge computing



#### **Overview EC programmes for ECS**



- Research and Innovation Horizon Europe
  - Digital, Industry & Space (Cluster 4)
    - Key Digital Technologies, Artificial Intelligence and Robotics, Advanced Computing and Big Data, ...
  - Partnerships
    - Key Digital Technologies JU also Photonics, AI & data, Smart Networks, EuroHPC
- R&I and first industrial deployment
  - IPCEI
- Deployment, capacity and skills
  - Digital Europe Programme, Pact for Skills
- Investment and support programmes
  - NextGenerationEU (RRF), InvestEU, EIC



#### **EC programmes for ECS**





#### **A new IPCEI on Microelectronics**



European

**Objective:** strengthen capabilities in digital IC **design** and **manufacturing** for data processing and communication towards **leading-edge** and **low-power** technology

Possible areas of development:

- > Design of **low-power processor** cores and **AI chips** for different vertical markets
- > Design of chips and systems for communication (5G, 6G and other)
- > Development of advanced semiconductor processes (Beyond Moore, More Moore)
- Advanced packaging for 2D/3D heterogeneous integration

<u>Sensing</u>, <u>power</u> electronics, <u>photonics</u> technologies can be integrated if instrumental to the main objectives at system level (eg Edge AloT)

Coordination with KDT JU required – higher TRLs, upto First Industrial Deployment

# **DEP - Edge AI TEF**





- Testing and Experimentation Facilities on Edge AI
- TEF Objectives: European platform bringing together top EU competences to enable companies of any size to test and experiment innovative edge Al components based on advanced low-power computing technologies (e.g. neuromorphic computing)
- TEF will offer end-users: fast-track prototyping, pilot production, industry transfer – support to SMEs via DIHs
- Funding covers mostly CapEx for platform infrastructure
- TEF can be accessed by user companies supported through KDT JU (OpEx) for Edge AI chip development





#### Horizon Europe Destination: Digital Emerging Technologies

**Topics**: Electronics, Photonics, Low-power processors, AI, 6G, Robotics, Quantum, Graphene

#### Sections:

- <u>Ultra-low power processors</u>
- European Innovation Leadership in Electronics
- European Innovation Leadership in Photonics
- 6G and foundational connectivity technologies
- Innovation in AI, Data and Robotics
- Tomorrow's deployable Robots: efficient, robust, safe, adaptive and trusted
- European leadership in Emerging Enabling Technologies (spintronics, 2D- materials, quantum sensing...)
- Flagship on Quantum Technologies: a Paradigm Shift
- Graphene: Europe in the lead

First calls: planned in Q3 2021, Q2 2022





#### From Cloud to Edge to IoT

- Full protocol stack for IoT integration in edge and cloud platforms
- Next generation (meta) operating systems for Edge Computing Computing continuum





## AI, IoT, Edge Computing in KDT JU

#### Key strategic domain for EU:

- High ambitions aiming for global leadership
- Need ecosystem effort from R&D to pilot lines strenghten EU's IP

To be kept into account:

- Coordination with other ECS-related programmes and instruments: IPCEIs, HE, DEP...
  - Alignment of planning R&I, design and manufacturing
  - Industrial Alliance
- Collaboration across constituencies
  - KDT with: IoT, Cloud, AI-data-robotics, 5G (SNS JU), Photonics



# Thank you

Marco Ceccarelli DG CONNECT European Commission



© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com

