
Micro-nano electronics challenges in KDT

Workshop 27/05/2021

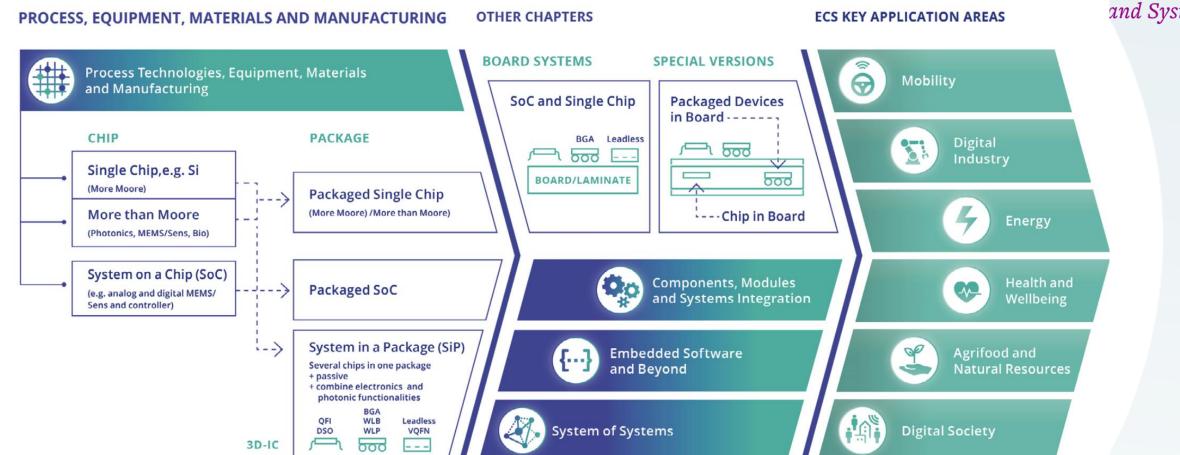
Jo De Boeck CSO & EVP imec Electronic Components and Systems

S

E

EU Main Objectives taken up by SRIA

- Boost industrial competitiveness through interdisciplinary technology innovations
- Ensure European digital autonomy through secure, safe and reliable ECS supporting key European application domains
- Establish and strengthen sustainable and resilient ECS value chains supporting the Green Deal
- Unleash the full potential of intelligent and autonomous ECS-based systems for the European Digital Age



MILESTONES TO BE REACHED VIA COLLABORATIVE RESEARCH PROJECTS ACROSS EUROPE

SHORT TERM (2021-2025)	MEDIUM TERM (2026–2030)	LONG TERM (2031 AND BEYOND)
Industrial competitiveness		
Additive manufacturing, rapid prototyping Remote engineering and operations, telepresence EU sovereignty	g Al joint intelligence	Zero defect design and manufacturing and circular economy for ECS Certified trusted hardware and embedded software for autonomous systems
EU devices enabling 5G connectivity Leveraging open source or alternatives to develop advanced European AI edge solutions Sustainability and Green Deal	GG connectivity RF and photonics devices New self-learning methods to ensure safe operations of complex systems	dependable SW based IoT systems
Materials enabling recycling and repair Supply-chain aware design flows Energy-optimised EV urban mobility	 New Power devices Energy management towards tow/zero power Energy-optimised H₂ long-distance mobility Food Traceability over the whole value chain Organic, compostable and biodegradable materials 	Emission-free cities CO ₂ -neutral mobility Reduction of cumulated carbon and cultivated land footprint by 20% in the next 20 years
Europe's Digital Age Communication infrastructure to support self-organised communities	 Improved and new human-machine interfaces Next-generation (patch-like) drug delivery systems part of the Internet of Medical Things 	emotion sensing understanding

The SRIA reference frame

Electronic Components and Systems

S

MARKETS, OBJECTIVES, CHALLENGES AND REQUIRED ACHIEVEMENTS FOR THE EUROPEAN DIGITAL AGE

> Electronic Components and Systems

> > .

A DOCUMENT FOR DECISION MAKERS WITH A SYNOPSIS OF THE ECS-SRIA

Micro-nano electronics challenges

Focus areas for this workshop

Electronic Components and Systems

C

Ε

S

0

Major challenge 1: Advanced computing, memory E and in-memory computing concepts

Scope

Semiconductor process technology and integration actions will focus on the introduction of **new materials, devices and concepts**, in close collaboration with the **equipment**, **materials, modelling/simulation and embedded software communities**, to allow for the necessary **diversity in computing infrastructure**.

The applications range **from high-performance** cloud/edge computing in servers, office/home computing, mobile computing, and **ultra-low power data processing at the IoT node** level up to the highest possible performance.

Expected achievement

Maintaining competence on advanced logic and memory technology in Europe is key to maintaining sovereignty and supporting societal benefits from the core technology base. Implementation of dedicated and sustainable pilot lines for specialised logic processes and devices supporting European critical applications is also a major objective, as is the exploration of new devices and architectures for lowpower or harsh environment applications.

PRIORITY

Explorations of the scaled Si technology

3 nm node and beyond (including FDSOI, FinFET/Trigate and stacked gate-all-around horizontal or vertical nanowires, Forksheet, complementary FET architectures, 3D integration), and further device and pitch scaling where parallel conduction paths (nanowires, nanosheets, etc) are brought even closer

PRIORITY

Novel device, circuit and system concepts and novel paradigms

Optimum PPAC specifications, high-energy efficiency and novel paradigms such as for near/in-memory, neuromorphic, optical and quantum computing. Long-term challenges such as steep slope switches (tunnel FET, negative capacitance FET, nanoelectromechanical systems, NEMS), spin-based transistors, and alternative high- performance switches.

PRIORITY

Unconventional devices and materials

Exploration and implementation of materials beyond Si (SiGe, SiC, GaN, Ge, InGaAs, functional oxides, 2D material heterostructures, nanowires). such as 2D and III-V materials, metamaterials, metasurfaces, nanowires, nanosheets, nanoparticles, quantum dots, spin effects, functional oxides, ferroelectric and magnetic, which are being investigated to overcome the limits of conventional CMOS logic and memories.

PRIORITY

Local AI processing and storage of data

New embedded non-volatile memory (eNVM) technologies to enable local AI processing and storage of configuration data, which decrease data transmission volume, energy needs and allow for more efficient control of electric powertrains and batteries.

S

Electronic

Components and Systems

Advanced computing, memory and in-memory computing concepts

Electronic Components

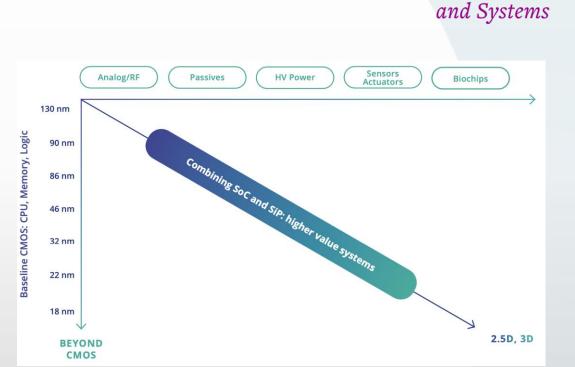
Ε

MAJOR CHALLENGE	торіс	SHORT TERM (2021–2025)	MEDIUM TERM (2026–2029)	LONG TERM (2030–2035)
Advanced computing, memory and in-memory computing concepts High-J Ultra- 3D int Topic and ir uncor on ma Topic circuit such a neuro and q neuro quant Topic is such a spin-b altern	Topic 1.1: Extensions of the scaled Si technology roadmaps High-performance Ultra-low power 3D integration	 N3 - N2 R&D 2nd generation gate-all-around devices, forksheet integration 18 nm FDSOI at technology platform integration level 	 N1,5 R&D - 3rd generation of Gate-All-Around devices CFET introduction 12/10 nm FDSOI at technology platform integration level 3D monolithic integration 	 Sub-1 nm node logic and memory technology (nanowires, nanosheets) at process and device research level Vertically stacked nanosheets 3D monolithic integration Beyond 10 nm FDSOI at technology platform integration level
	Topic 1.2: Exploration and implementation of unconventional devices based on materials beyond Si	 SiGe (high Ge) channel Cu alternative solutions 	 Ge channel Optical interconnects 2D materials exploration 	 III-V channel 2D materials device integration
	Topic 1.3: Novel device, circuit and systems concepts, such as for near/in-memory, neuromorphic, optical and quantum computing neuromorphic, optical and quantum computing	 Near/in-memory computing 3D heterogeneous integration (logic/memory) 	 In-memory computing Neuromorphic computing (spiking) 3D monolithic integration Photonic SOI 	 Quantum computing Optical computing
	Topic 1.4: Long-term challenges such as steep-slope switches, spin-based transistors and alternatives		• TFET • CNTFET • 2D material FET	 NCFET NEMS switch Topologic insulator electronic devices Spin wave devices Mott FET (VO₂, HfO₂, etc)
	Topic 1.5: New eNVM technologies	• PCRAM • STT-MRAM • FDSOI embedded MRAM	 PCRAM VCMA-MRAM ReRAM FeRAM 	 ReRAM (MLC) Hi-density ReRAM

Major challenge 2: Novel devices and circuits that E enable advanced functionality

Scope

These are materials, process modules and integration technology for **novel devices and circuits that enable advanced functionality** (sensing, actuating, energy harvesting and storage, connectivity, biomedical, etc), including (wafer or flexible) **substrate technologies**.


Integration of the **logic/memory** building blocks **with the nonlogic/non-memory** building blocks on a single chip - power chips, sensors, NEMS/MEMS (microelectromechanical systems), energy harvesting and storage devices, RF chips, photonic functionalities.

Expected achievement

Implementation of **pilot lines for integrated application-defined** sensors, novel IoT solutions, complex sensor systems and new (bio)medical devices, new RF and mm-wave device options (including radar), photonics options, electronics and packaging solutions.

Applications for large-area, lightweight, robust and structurally integrated electronics. Boundaries between µ-electronics, semiconductor electronics, photonics and flexible (stretchable) electronics will slowly disappear.

Strategic collaborative EU projects for European industry to become more independent, development of a EU-based supply chain.

Electronic

Components

Connect the application needs and system-level innovation to the technology innovation.

Major challenge 2: Novel devices and circuits that E enable advanced functionality

Scope

These are materials, process modules and integration technology for **novel devices and circuits that enable advanced functionality** (sensing, actuating, energy harvesting and storage, connectivity, biomedical, etc), including (wafer or flexible) **substrate technologies**.

Integration of the **logic/memory** building blocks **with the non-logic/non-memory** building blocks on a single chip power chips, sensors, NEMS/MEMS (microelectromechanical systems), energy harvesting and storage devices, RF chips, photonic functionalities.

Expected achievement

Implementation of **pilot lines for integrated applicationdefined** sensors, novel IoT solutions, complex sensor systems and new (bio)medical devices, new RF and mm-wave device options (including radar), photonics options, electronics and packaging solutions.

Applications for large-area, lightweight, robust and structurally integrated electronics. Boundaries between µ-electronics, semiconductor electronics, photonics and flexible (stretchable) electronics will slowly disappear.

Strategic collaborative EU projects for European industry to become more independent, development of a EUbased supply chain.

PRIORITY

Application-specific logic

Neuromorphic computing. Logic integration with power management devices, icompatibility with harsh environments.

Logic integration with RF, optical or sensor

technologies.

Ultra-low power (ULP) technology platform and design.

PRIORITY

Advanced sensor technologies

Mechanical, chemical, physical sensors and biochemical sensors (*fluidics*). Transmitter/receiver and active phased array imaging.

PRIORITY

Advanced power electronics technologies

Si-based, BCD, SiC, GaN, Ga2O3, etc; larger diameter substrates for cost-sensitive power solutions. Higher power density and frequency, wide-bandgap materials for high temperature electronics, CMOS/IGBT, integrated logic, uni- and bipolar, high voltage classes, lateral to vertical architectures. Energy harvesting, storage, efficiency, autonomy Electronic Components and Systems

PRIORITY

Advanced RF and photonics communication technologies

more energy-efficient control of TX (5G, 6G preparations), new energy-efficient RF and mm-wave integrated device options (e.g. SiGe/BiCMOS, FD SOI, CMOS, PIC). RF cryogenic electronics for QIP.

CMOS- (and packaging-) compatible MOEMS and microoptics, nanophotonics, optical interconnections, photonics-enabled, and integrated light emitters.

PRIORITY

Electronics on flexible and structural substrates

Novel (semi)conducting, insulating and encapsulation materials for more reliable devices, and novel substrate materials, biodegradable materials

WS 5 "Multifunctional Integration"

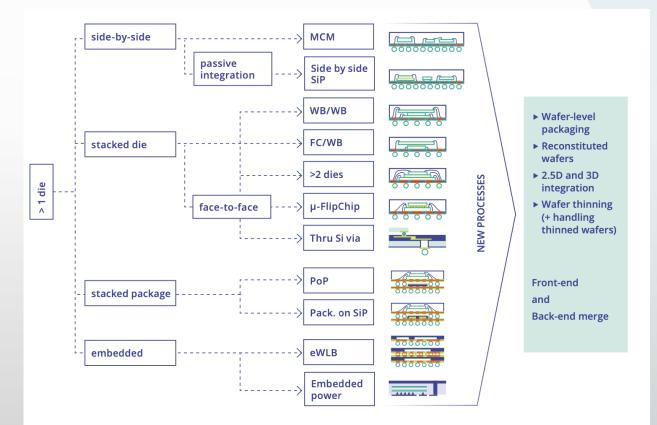
Novel devices and circuits that enable advanced functionality

MAJOR CHALLENGE	ΤΟΡΙϹ	SHORT TERM (2021–2025)	MEDIUM TERM (2026–2029)	LONG TERM (2030–2035)
Major challenge 2: Novel devices and circuits that enable advanced functionality	Topic 2.1: Application-specific logic integration	ULP 18 nm FDSOI technology integration	 12 nm FDSOI technology integration New architectures for neuromorphic computing 3D stacking for monolithic integration 	• 3D monolithic integration
	Topic 2.2: Advanced sensor technologies Topic 2.3: Advanced power electronics technologies	 Continuous improvement of sensitivity (imagers, IMU, etc), range (lidar), and reduction of sensor area and energy consumption Development of miniaturised low power chemical sensors Development of biomedical sensors integrated with micro/ nanofluidics Heterogeneous integration of sensor technologies with (ULP) logic/memory technologies 22 nm FDSOI for the IoT Silicon, BCD, SiC and GaN-based technologies and substrate materials 	 Quantum sensors Ultra-low power chemical sensor systems for pollution monitoring Energy autonomous sensor systems Multi-sensor systems for IoT Integrated biomedical sensor system Heterogeneous integration of sensor technologies with novel device, circuit and systems memory and computing concepts 12nm FD-SOI for IoT New CMOS and IGBT processes Smart GaN devices (combining logic and power devices) 	 Nanoelectronic sensor devices with individual molecule sensitivity and selectivity Nanoelectronic biomedical sensor systems Monolithic integration of sensor technologies with novel devices, circuit and systems memory and computing concepts Beyond 10 nm FDSOI for IoT B-Ga₂O₃ Diamond
		Energy-efficient systems, including energy harvesting	 Vertical GaN power devices Towards 300 mm GaN and 200 mm SiC substrates Energy-autonomous systems Energy harvesting and energy storage systems 	
Major challenge 2: Novel devices and circuits that enable advanced functionality	Topic 2.4: Advanced RF and photonics communication technologies	 Enable 5G connectivity RF and mm-wave integrated device options building on, for example, SiGe/BiCMOS (increase of ft), RF and FDSOI, CMOS, PIC GaN/Si and GaN/SiC technologies Next-generation RFSOI 300 mm photonic SOI 200 mm POI 	 Enable 6G connectivity? MOEMS and micro-optics, optical interconnections and light emitters Photonic SOI next generation Advanced RF filter materials and technologies 	• RF cryogenic electronics for QIP
	Topic 2.5: Flexible and structural substrate electronics	 Increased reliability of materials and process techniques, reduction of pattern size Development for displays, textiles and wearables (sensors) Integration of conformable electronics on 3D surfaces 	 Stretchable devices and displays Flexible photonic components Compostable electronics 	- Seamless integration of $\mu\text{-}electronics,$ flexible electronic and photonics

Ε

Major challenge 3: Advanced heterogeneous integration and packaging solutions

Electronic Components and Systems


F

Scope

- Advanced packaging and interconnection methods to bridge the scale gap between wafer dies of various technologies and printed circuit boards (PCBs)
- Advanced heterogeneous integration to include new functionalities in SiP

Goal

enable new solutions for the digital age and to ensure industrial competitiveness and European sovereignty

Major challenge 3: Advanced heterogeneous integration and packaging solutions

Scope

- Advanced packaging and interconnection methods to bridge the scale gap between wafer dies of various technologies and printed circuit boards (PCBs)
- Advanced heterogeneous integration to include new functionalities in SiP

Goal

enable new solutions for the digital age and to ensure industrial competitiveness and European sovereignty

PRIORITY

Novel systems with advanced logic

(Heterogeneous / 3D) Integration with advance memory/logic circuits for Ultra-low power technology

PRIORITY

Advanced interconnect, encapsulation and packaging technologies

Vertical and horizontal integrations, TSVs; Fan-out WLP; Chip embedding; Wafer-stacking; Thermal management in packaging;

PRIORITY

3D integration technologies.

3D integration density improvement; Chip-package-board co-design.

Electronic Components and Systems

PRIORITY

Specific power and RF application technologies

RF Miniaturization for millimetre wave and THz applications; Functional integration for package, e.g. antennas, passive components; Packaging of wide-bandgap materials, SiC and GaN; Cryogenic packaging for quantum tech.

PRIORITY

Enhanced reliability, robustness and sustainability technologies

Testing of separate components before integration; Built-in self-test

System of systems (SoS) & Internet of things (IoT)

SoS/IoT are essential for digitization, a key point for the edge to cloud continuum, a hierarchical physical/digital infrastructure, providing the HW/SW elements to:

- map the physical world with the digital world,
- process data in various ways, where and when it is required,
- ensure a seamless flow of information, from the deep edge to the cloud.

Priorities span the entire SoS/IoT domain: materials, HW architectures, sensors, actuators, smart devices, processing, connectivity, interoperability, integration platforms, e2e trustworthiness, ...

WS 4 AI, IOT, Advanced Control C_{OD} to grow tenfold by 2025.

PRIORITY

Advanced computing, memory and inmemory computing concepts.

E.g. new materials, memory concept and technologies for mobile computing, and ultra-low power data processing at the IoT node level up to the highest possible performance.

PRIORITY

Novel devices and circuits that enable advanced functionality.

E.g. application-defined sensors, novel IoT solutions, complex sensor systems and new (bio)medical devices, new RF and mm-wave device options (including radar), photonics options, electronics and packaging solutions.

PRIORITY

Efficient physical/functional integration satisfying heterogeneous needs

IoT devices operate in heterogeneous environments, with different energy consumption and autonomy profiles, provides multiple types of information, heterogeneous functionalities, across sensing, actuation, connectivity, information processing, ... Electronic Components and Systems

WS1

NS1

WS1

WS1

WS1

PRIORITY

SoS and IoT architectures, supported by appropriate design and architecting tools.

PRIORITY

Open SoS/IoT integration and orchestration platforms.

PRIORITY

Support composability , complexity, evolvability, heterogeneity and diversity in integration and orchestration process.

PRIORITY

- Integration platforms interoperability
- Autonomous interoperability
- Existing and emerging SoS/IoT interop.

PRIORITY

Ensuring end-2-end cyber-security, safety and privacy of SoS/IoT.

Major challenge 4: World-leading and sustainable semiconductor manufacturing equipment and technologies

Scope

Semiconductor manufacturing equipment for the high volume production of sub-3 nm node logic and memory according to PPAC roadmap requirements, chips/chiplets with single and/or multi-node layers, advanced functionality devices and heterogeneous integration technology options.

Expected achievement

The goal of the European equipment and manufacturing industry for advanced semiconductor technologies is to **lead the world in miniaturisation and performance** by supplying new equipment and new materials..

Moreover, European semiconductor equipment and manufacturing technologies will be innovation leaders in terms of the use of AI, machine learning in the operation of semiconductor fabrication, and in taking care of limited datasets for model training in a high-mix environment. Solutions for current and future factories will allow high-productivity manufacturing of variable volume, and the energy-efficient, sustainable, resource- saving volume production of semiconductors.

PRIORITY

Wafer fabrication equipment

Advanced patterning equipment and mask manufacturing, patterning and tuning, defect inspection and repair, metrology and cleaning. Advanced holistic lithography using DUV, EUV and nextgeneration lithography techniques, such as e-beam and mask-less lithography, directed self-assembly (DSA) and nano-imprinting. Multi-dimensional metrology (MDM) and inspection. Productivity-aware design (PAD) techniques.

Thin film processes including future solutions. Wet and dry processing.

Advanced nanomaterials and metamaterials. Production of III-V, SiC, etc. substrates at relevant size.

PRIORITY

Assembly equipment

3D integration and interconnect Equipment optimised for both high-volume large batches and low volume small batches. Die separation, attachment, thinning, handling and encapsulation. Multi-component assembly on flexible, stretchable substrates & roll-to-roll.

Components and Systems

Electronic

PRIORITY

Test equipment

In-line and off-line technologies for the testing, validation and verification (TV&V) of heterogeneous chips and SiP.

Characterisation equipment for quality control at multiple levels and different scales.

PRIORITY

Dedicated equipment and manufacturing technology

Dedicated equipment for manufacturing of electronics on flexible, structural and/or bio- compatible substrates.

Specific manufacturing technologies to enable flexible, sustainable, agile and competitive high-volume semiconductor manufacturing of high- quality, advanced functionality devices and heterogeneous integration technology options in Europe. for the production and characterisation of advanced

integrated photonics, as well as for the production of quantum computing chips.

World-leading and sustainable semiconductor manufacturing equipment and technologies

C S Electronic Components and Systems

Ε

MAJOR CHALLENGE	торіс	SHORT TERM (2021–2025)	MEDIUM TERM (2026–2029)	LONG TERM (2030–2035)
Major challenge 4: World-leading and sustainable semiconductor manufacturing equipment and technologies	Topic 4.1: Wafer fabrication equipment for nanoscale patterning, layer deposition, metrology, and inspection for advanced logic and memory technologies	 Manufacturing equipment for 3 nm node logic and memory 	 Manufacturing equipment for 1 nm node logic and memory Equipment to enable novel switches, transistors and alternatives based on, for example, 2D materials, topologic insulator and spin-wave devices 	 Manufacturing equipment for sub-1 nm node logic and memory
	Topic 4.2: Wafer fabrication equipment for new transistor front end of line (FEOL) and new interconnect back end of line (BEOL) concepts	 Manufacturing equipment for 3 nm node transistor and 3D heterogeneous integration interconnect concepts 	 Manufacturing equipment for 1 nm node transistor and 3D monolithic integrated and optical interconnect concepts 	 Manufacturing equipment for sub 1 nm node transistor and 3D monolithic and optical interconnect concepts
	Topic 4.3: Wafer fabrication equipment for new materials and processes	 Manufacturing equipment for 3 nm node materials and processes Equipment for manufacturing of components with advanced nanomaterials Production tools for III-V, GaN, SiC or other exotic material substrates 	 Manufacturing equipment for 1 nm node materials and processes Equipment for materials and processes for new eNVM types such as (high-density) ReRAM Production tools for 300mm wafer substrates based on selected exotic materials 	 Manufacturing equipment for sub 1 nm node materials and processes
	Topic 4.4: Assembly and test equipment enabling advanced packaging of single and/or multi-node chips/chiplets	 Assembly and test equipment for chip-to-wafer stacking, fan- out WLP, multi-die packaging, "2.5D" interposers and TSVs 300 mm photonic SOI 200 mm POI 	 Assembly and test equipment to enable next-generation autonomous sensors, power electronics and RF/optical communication packaged ICs 	

Electronic Components

S

0

0

C

Ε

0

Electronic Components and Systems

.

A DOCUMENT FOR DECISION MAKERS WITH A SYNOPSIS OF THE ECS-SRIA

0

.

+

.

٠