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1 Edge computing and embedded 
Artificial Intelligence 

1 Scope 
1.1 Introduction  

Our world is drastically changing with the deployment of digital technologies that provide ever 
increasing performance and autonomy to existing and new applications at a constant or de-
creasing cost but with a big challenge concerning energy consumption. Especially cyber-phys-
ical systems (CPS) place high demands on efficiency and latency. Distributed computing sys-
tems have diverse architectures and in addition tend to form a continuum between extreme 
edge, fog, mobile edge1 and cloud. Nowadays, many applications need computations to be 
carried out on spatially distributed devices, generally where it is most efficient. This trend in-
cludes edge computing, edge intelligence (e.g. Cognitive CPS, Intelligent Embedded Systems, 
Autonomous CPS) where raw data is processed close to the source  to identify the insight data  
as early as possible bringing several  benefits such as reduce latency, bandwidth,  power con-
sumption, memory footprint,  and increase the security  and data protection.  
 

 
Figure 1 The continuum of computing and relations between the elements constituting an embedded AI system (figure from 
Gerd Teepe) 

 
The introduction of Artificial Intelligence (AI) at the edge for data analytics brings important 
benefits for a multitude of applications. New advanced, efficient and specialized processing 
architectures (based on CPU, embedded GPU, accelerators, neuromorphic computing, FPGA 
and ASICs) are needed to increase, for several orders of magnitude, the edge computing per-
formances and to drastically reduce the power consumption.   
 
One of the mainstream uses of AI is to allow an easier and better interpretation of the data 
(unstructured data such as image files, audio files, or environmental data) coming from the 
physical world. Being able to interpret data from the environment locally triggers new appli-
cations such as autonomous vehicles. The use of AI in the edge will contribute to automate 
complex and advanced tasks, and represents one of the most important innovations being in-
troduced by the digital transformation. Important examples are its contribution in the recovery 
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from Covid-19 pandemic as well as its potential to ensure the required resilience in future cri-
ses2.   
This Chapter focuses on computing components, and more specifically Embedded architec-
tures, Edge Computing devices and systems using Artificial Intelligence at the edge.  These 
elements rely on process technology, embedded software, and have constraints on quality, re-
liability, safety, and security. They also rely on system composition (systems of systems) and 
design and tools techniques to fulfil the requirements of the various application domains.  
 
Furthermore, this Chapter focuses on the trade-off between performances and power 
consumption reduction, and managing complexity (including security, safety and pri-
vacy3) for Embedded architectures to be used in different applications areas, which will 
spread Edge computing and Artificial Intelligence use and its contribution to the Euro-
pean sustainability. 
 

1.2 Positioning edge and cloud solutions 
 
The centralized cloud computing model, including data analysis and storage for the increasing 
number of devices in a network, is limiting the capabilities of many applications, creating prob-
lems regarding interoperability, latency and response time, connectivity, privacy and data pro-
cessing.  
Another issue is dependability that creates the risk of a lack of data availability for different 
applications, a large cost in energy consumption, and the solution's concentration in the hands 
of a few cloud providers that raise concerns related to data security and privacy. 
The increased number of intelligent IoT devices provides new opportunities for enterprise data 
management, as the applications and services are moving the developments toward the edge 
and, therefore, from the IoT data generated and processed by enterprises, most of them could 
be processed at the edge rather than in the traditional centralized data centre in the cloud. 
  
Edge Computing enhances the features and the capabilities (e.g. real-time) of IoT applications, 
embedded, and mobile processor landscape by performing data analytics through high-perfor-
mance circuits using AI/ML techniques and embedded security. Edge computing allows the 
development of real-time applications, considering the processing is performed close to the 
data source. It can also reduce the amount of transmitted data by transforming an extensive 
amount of raw data into few insightful data with the benefits of decreasing communication 
bandwidth and data storage requirements, but also increasing security, privacy data protection, 
and reducing energy consumption. Moreover, edge computing provides mechanisms for dis-
tributing data and computing, making IoT applications more resilient to malicious events. Edge 
computing can also provide distributed deployment models to address more efficient connec-
tivity and latency, solve bandwidth constraints, provide higher and more "specialized" pro-
cessing power and storage embedded at the network's edge. Other benefits are scalability, ubiq-
uity, flexibility, and lower cost.  
In this Chapter, Edge Computing is described as a paradigm that can be implemented using 
different architectures built to support a distributed infrastructure of data processing (data, im-
age, voice, etc.) as close as possible to the points of collection (data sources) and utilization. In 
this context, the edge computing distributed paradigm provides computing capabilities to the 
nodes and devices of the edge of the network (or edge domain) to improve the performance 
(energy efficiency, latency, etc.), operating cost, reliability of applications and services, and 
contribute significantly to the sustainability of the digitalization of the European society and 
 

2   https://www.eenewsembedded.com/news/nxp-developing-neural-networks-identify-covid-19 
3   Security, safety and privacy will be covered in the Chapter about “Quality, reliability, safety and security” 



 

 

economy. Edge computing performs data analysis by minimizing the distance between nodes 
and devices and reducing the dependence on centralized resources that serve them while min-
imizing network hops. Edge computing capabilities include a consistent operating approach 
across diverse infrastructures, the ability to perform in a distributed environment, deliver com-
puting services to remote locations, application integration, orchestration. It also adapts service 
delivery requirements to the hardware performance, and develops AI methods to address ap-
plications with low latency and varying data rates requirements – in systems typically subject 
to hardware limitations and cost constraints, limited or intermittent network connections. 
For intelligent embedded systems, the edge computing concept is reflected in the development 
of edge computing levels (micro, deep, meta, explained in the next paragraphs) that covers the 
computing and intelligence continuum from the sensors/actuators, processing, units, control-
lers, gateways, on-premises servers to the interface with multi-access, fog, and cloud compu-
ting.  
 
A description of the micro, deep and meta edge concepts is provided in the following para-
graphs (as proposed by the  AIoT community).  
The micro-edge describes intelligent sensors, machine vision, and IIoT devices that generate 
insight data and are implemented using microcontrollers built around processors architectures 
such as ARM Cortex M4 or recently RISC-V which are focused on minimizing costs and power 
consumption. The distance from the data source measured by the sensors is minimized. The 
compute resources process this raw data in line and produce insight data with minimal latency. 
The hardware devices of the micro-edge physical sensors/actuators generate from raw data 
insight data and/or actuate based on physical objects by integrating AI-based elements into 
these devices and running AI-based techniques for inference and self-training.  
Intelligent micro-edge allows IoT real-time applications to become ubiquitous and merged 
into the environment where various IoT devices can sense their environments and react fast 
and intelligently with an excellent energy-efficient gain. Integrating AI capabilities into IoT 
devices significantly enhances their functionality, both by introducing entirely new capabili-
ties, and, for example, by replacing accurate algorithmic implementations of complex tasks 
with AI-based approximations that are better embeddable. Overall, this can improve perfor-
mance, reduce latency and power consumption, and at the same time increase the devices’ 
usefulness, especially when the full power of these networked devices is harnessed – a trend 
called AI on edge. 
 
The deep-edge comprises intelligent controllers PLCs, SCADA elements, machine vision con-
nected embedded systems, networking equipment, gateways and computing units that aggre-
gate data from the sensors/actuators of the IoT devices that are generating data. Deep edge 
processing resources are implemented with performant processors and microcontrollers such 
as Intel i-series, Atom, ARM M7+, etc., including CPUs, GPUs, TPUs, and ASICs. The system 
architecture, including the deep edge, depends on the envisioned functionality and deployment 
options considering that these devices' cores are controllers: PLCs, gateways with cognitive 
capabilities that can acquire, aggregate, understand, react to data, exchange, and distribute in-
formation. 
The meta-edge integrates processing units, typically located on-premises, implemented with 
high-performance embedded computing units, edge machine vision systems, edge servers (e.g., 
high-performance CPUs, GPUs, FPGAs, etc.) that are designed to handle compute-intensive 
tasks, such as processing, data analytics, AI-based functions, networking, and data storage.  
  
This classification is closely related to the distance between the data source and the data pro-
cessing, impacting overall latency. A high-level rough estimation of the communication latency 



 

 

and the distance from the data sources are as follows. Micro edge the latency is below 1ms, 
and the distances from zero to max 15 m, deep edge with distances under 1 km and latency 
below 2-5 ms, meta edge latencies under 10 ms and distances under 50 km, beyond 50 km the 
fog computing, MEC concepts are combined with near edge 10-20 ms and 100 km, far edge 
20-50ms 500 km and cloud and data centres more than 50 ms and 1000 km. 
  

 Latency Distance 
Micro-edge Below 1ms From 0 cm to 15 m 
Deep-edge Below 2-5 ms Below 1km 
Meta-edge Below 10 ms Below 50 km 
Fog 10-20 ms Up to 50 km 
MEC4 + near edge 10-20 ms  100 km 
Far edge 20-50 ms 200 km 
Cloud/data cen-
ters/HPC 

More than 50 -100 ms 1000 km and beyond 

 
 
Deployments "at the edge" can contribute, thanks to its flexibility to be adapted to the specific 
needs, to provide more energy-efficient processing solutions by integrating various types of 
computing architectures at the edge (e.g., neuromorphic, energy-efficient microcontrollers, AI 
processing units), reduce data traffic, data storage and the carbon footprint (one way to reduce 
the energy consumption is to know which data and why it is  collected , which targets are 
achieved and optimize all levels of processes, both at hardware and software levels, to 
achieve those targets,  and finally to evaluate what is consumed to process the data). Further-
more, edge computing reduces the latency and bandwidth constraints of the communication 
network by processing locally and distributing computing resources, intelligence, and software 
stacks among the computing network nodes and between the centralized cloud and data centres.  
In general, the edge (in the peripheral of a global network as the Internet) includes compute, 
storage, and networking resources, at different levels as described above, that may be shared 
by several users and applications using various forms of virtualization and abstraction of the 
resources, including standard APIs to support interoperability.  
More specifically, an edge node covers the edge computing, communication, and data analytics 
capabilities that make it smart/intelligent. An edge node is built around the computing units 
(CPUs, GPUs/FPGAs, ASICs platforms, AI accelerators/processing), communication network, 
storage infrastructure and the applications (workloads) that run on it.  
The edge can scale to several nodes, distributed in distinct locations and the location and the 
identity of the access links is essential. In edge computing, all the nodes can be dynamic. They 
are physically separated and connected to each other by using wireless/wired connections in 
topologies such as mesh. The edge nodes can be functioning at remote locations and operates 
semi-autonomously using remote management administration tools. 
The edge nodes are optimized based on the energy, connectivity, size, cost and their computing 
resources are constrained by these parameters. In different application cases, it is required to 
provide isolation of edge computing from data centres in the cloud to limit the cloud's domain 
interference and its impact on edge services. 
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Finally, the edge computing concept supports a dynamic pool of distributed nodes, using com-
munication on partially unreliable network connections while distributing the computing tasks 
to resource-constrained nodes across the network. 
 

1.3 Positioning Embedded Artificial Intelligence 
 
Thanks to the fast development in Machine Learning during the last decade, Artificial Intelli-
gence is nowadays widely used. However, it demands huge quantity of data, especially for 
supervised learning using Deep Learning techniques, to get accurate results level. According 
to the application complexity, neuronal deep learning architectures are becoming more and 
more complex and demanding in terms of calculations time. As a result, the huge AI success, 
its perversive deployment and its computing costs, the worldwide energy consumed will be 
increased dramatically to levels that will be unsustainable in the near future.  However, for a 
similar performances, due to increase of the efficiency of the algorithm and various quantiza-
tion and pruning techniques, the computing and storage need tends to decrease over time. Com-
plex tasks such as voice recognition which required models of 100 GB in the cloud are now 
reduced to less than half a gigabyte and can be run on local devices, such as smartphones.  
 

 
Figure 1: Increase of efficiency used to train to AlexNet level performance (from https://openai.com/blog/ai-and-
efficiency/). 

 
Artificial Intelligence is a very efficient tool for several applications (e.g., image recognition 
and classifications, natural language understanding, complex manufacturing optimization, sup-
ply chain improvements, etc.) where pattern detection and process optimization can be done. 
 



 

 

As a side effect, data collection is exploding with high heterogeneity levels, coming from nu-
merous and very various sensors. On top, the bandwidth connecting Data Centers  is limited 
and not all data need to be processed in the Cloud. 
Naturally, systems are evolving from a centralized to a distributed architecture.  Artificial In-
telligence is, then, a crucial element that allows soft and optimized operation of distributed 
systems. Therefore, it is increasingly more embedded in the various network nodes even down 
to the very edge. 
Such powerful tool allows Edge Computing to be more efficient in treating the data locally, 
while also minimizing the necessary data transmission to the upper network nodes. Another 
advantage of Embedded Artificial Intelligence is its capacity to self-learn and adapt to the en-
vironment through the data collected. Today’s learning techniques are still mostly based on 
supervised learning, but semi-supervised, self-supervised, unsupervised or federative learning 
techniques are being developed. 
At the same time, semiconductor technologies, hardware architectures, algorithms and soft-
ware are being developed and industrialized to reduce memory size, time for data treatment 
and energy consumption, thus making Embedded AI an important pillar for Edge Computing. 
Tools for Embedded AI are also rapidly evolving leading to faster and easier implementation 
at all levels of the network.  
 
 

1.4 Scope of the Chapter 
 
The scope of this Chapter is to cover the hardware architectures and their realizations (Systems 
of Chip, Embedded architectures), mainly for edge and “near the user” devices such as IoT 
devices, cars, ICT for factories and local processing and servers. Data centres and electronic 
components for data centres are not the focus of the Chapter, except when the components can 
be used in local processing units or local servers (local clouds, swarm, fog computing, …). We 
therefore also cover this “edge” side of the “continuum of computing” and the synergies with 
the cloud. Hardware for HPC centres is also not the focus, even if the technologies developed 
for HPC systems are often found in high end embedded systems a few years (decades?) after.  
Each Section of this Chapter is split into 2 sub-Sections, from the generic to the more specific: 

• Generic technologies for compute, storage and communication (generic Embedded 
architectures technologies) and technologies that are more focused towards edge 
computing. 

• Technologies focused for devices using Artificial Intelligence techniques (at the edge). 
 
The technological aspects, at system level (PCB, assembly, system architecture, etc.), and em-
bedded and application software are not part of this Chapter as they are covered in other Chap-
ters. 
 
Therefore, this Chapter shall cover mainly the elements foreseen to be used to compose  AI or 
Edge systems: 

• processors with high energy efficiency,  
• accelerators (for AI and for other tasks, such as security),  
• DPU (Data processing Unit, e.g. logging and collecting information for automotive and 

other systems) and processing data early (decreasing the load on 
processors/accelerators), 



 

 

• memories and associated controllers, specialized for low power and/or for processing 
data locally (e.g. using non-volatile memories such as PCRAM, CBRAM, MRAM for 
synaptic functions, and In/Near Memory Computing), … 

• power management. 
 
Of course, all the elements to build a SoC are also necessary, but not specifically in the scope 
of this Chapter:  

• Security infrastructure (e.g. Secure Enclave) with placeholder for customer-specific 
secure elements (PUF, cryptographic IPs…). Security requirements are dealt with 
details in the corresponding Chapter. 

• Field connectivity IPs (see connectivity Chapter, but the focus here is on field 
connectivity) (all kinds, wired, wireless, optical), ensuring interoperability. 

• Integration using chiplet and interposer interfacing units will be detailed in the 
technology Chapter. 

• And all other elements such as coherent cache infrastructure for many-cores, 
scratchpad memories, smart DMA, NoC with on-chip interfaces at router level to 
connect cores (coherent), memory (cache or not) and IOs (IO coherent or not), SerDes, 
high speed peripherals (PCIe controllers and switches, ...), trace and debug hardware 
and low/medium speed peripherals (I2C, UART, SPI…). 

 
However, the Chapter will not detail the challenges for each of these elements, but only the 
generic challenges that will be grouped in 1) Edge computing and 2) Embedded Artificial In-
telligence domains.  
In a nutshell the main recommendation is a paradigm shift towards distributed low power ar-
chitectures/topologies: 

• Distributed computing, 
• and AI using distributed computing, leading to distributed intelligence. 

 
1.5 State of the Art 

 
This paragraph gives an overview of the importance that AI and embedded intelligence is play-
ing in the sustainable development, the market perspectives for the AI components and the 
indication of some semiconductor companies providing components and key IPs.  
 
Impact of AI and embedded intelligence in sustainable development  
AI and particularly embedded intelligence, with its ubiquity and its high integration level hav-
ing the capability “to disappear” in the environment (ambient intelligence), is significantly in-
fluencing many aspects of our daily life, our society, the environment, the organizations in 
which we work, etc. AI is already impacting several heterogeneous and disparate sectors, such 
as companies’ productivity5, environmental areas like nature resources and biodiversity preser-
vation6, society in terms gender discrimination and inclusion7, 8, smarter transportation 
 

5 Acemoglu, D. & Restrepo, P. Artificial Intelligence, Automation, and Work. NBER Working Paper No. 24196 
(National Bereau of Economic Research, 2018). 
6 Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap 
images with deep learning. Proc. Natl Acad. Sci. USA 115, E5716–E5725 (2018). 
7 Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V. & Kalai, A. Man is to computer programmer as woman is to 
homemaker? Debiasing word embeddings. Adv. Neural Inf. Process. Syst. 29, 4349–4357 (2016). 
8 Tegmark, M. Life 3.0: Being Human in the Age of Artificial Intelligence (Random House Audio Publishing 
Group, 2017) 



 

 

systems9, etc. just to mention a few examples. The adoption of AI in these sectors is expected 
to generate both positive and negative effects on the sustainability of AI itself, of the solutions 
based on AI and on their users10 11. It is difficult to extensively assess these effects and there is 
not, to date, a comprehensive analysis of their impact on sustainability. A recent study12 has 
tried to fill this gap, analysing AI from the perspective of 17 Sustainable Development Goals 
(SDGs) and 169 targets internationally agreed in the 2030 Agenda for Sustainable Develop-
ment13. From the study it emerges that AI can enable the accomplishment of 134 targets, but it 
may also inhibit 59 targets in the areas of society, education, health care, green energy produc-
tion, sustainable cities and communities. 
 
From a technological perspective AI sustainability depends, at first instance, on the availability 
of new hardware14 and software technologies. From the application perspective, automotive, 
computing and healthcare are propelling the large demand of AI semiconductor components 
and, depending on the application domains, of components for embedded intelligence and edge 
AI. This is well illustrated by car factories on hold because of the current shortage of electronic 
components. Research and industry organizations are trying to provide new technologies that 
lead to sustainable solutions redefining traditional processor architectures and memory struc-
ture. We already saw that computing near, or in-memory, can lead to parallel and high-efficient 
processing to ensure sustainability.  
The second important component of AI that impacts sustainability concerns software and in-
volves the engineering tools adopted to design and develop AI algorithms, frameworks and 
applications. The majority of AI software and engineering tools adopts an open-source ap-
proach to ensure performance, lower development costs, time to market, more innovative so-
lutions, higher design quality and software engineering sustainability. However, the entire Eu-
ropean community should contribute and share the engineering efforts at reducing costs, im-
proving the quality and variety of the results, increasing the security and robustness of the 
designs, supporting certification, etc .  
The report on “Recommendations and roadmap for European sovereignty on open source hard-
ware, software and RISC-V Technologies15” details these aspects in more details. 
 
Sustainability through open technologies extends also to open data, rules engines16 and librar-
ies. The publication of open data and datasets is facilitating the work of researchers and devel-
opers for ML and DL, with the existence of numerous images, audio and text databases that 
are used to train the models and become benchmarks17. Reusable open- source libraries18 allow 
to solve recurrent development problems, hiding the technical details and simplifying the 
 

9 Adeli, H. & Jiang, X. Intelligent Infrastructure: Neural Networks, Wavelets, and Chaos Theory for Intelligent 
Transportation Systems and Smart Structures (CRC Press, 2008). 
10 Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science (80-.) 353, 790–
794 (2016). 
11 Courtland, R. Bias detectives: the researchers striving to make algorithms fair. Nature 558, 357–360 (2018). 
12 Vinuesa, R., Azizpour, H., Leite, I. et al. The role of artificial intelligence in achieving the Sustainable 
Development Goals. Nat Commun 11, 233 (2020). 
13 UN General Assembly (UNGA). A/RES/70/1Transforming our world: the 2030 Agenda for Sustainable 
Development. Resolut 25, 1–35 (2015). 
14 AI is boosting the semiconductor industry with a market of $68.5 billion already by the mid-2020s, 
according to IHS Markit. The boom of this market is due to the availability of emerging processor architectures 
for GPUs, FPGAs, ASICs and CPUs that enables applications based on deep learning and vector processing. 
15 https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-
open-source-hardware-software-and-risc-v 
16 E.g. Clips, Drools distributed by red Hat, DTRules by Java, Gandalf on PHP 
17 A few examples are ImageNet (14 million images in open data), MNIST or WordNet (English linguistic basis) 
18 E.g. Nvidia Rapids, Amazon Comprehend, Google NLU Libraries 



 

 

access to AI technologies for developers and SMEs, maintaining a high-quality results, reduc-
ing time to market and costs. 
 
Eventually, open-source initiatives (being so numerous, heterogeneous, and adopting different 
technologies) provide a rich set of potential solutions, allowing to select the most sustainable 
one depending on the vertical application. At the same time, open-source is a strong attractor 
for applications developers as it gathers their efforts around the same kind of solutions for given 
use cases, democratizes those solutions and speeds up their development.  However, some in-
itiatives should be developed, at European level, to create a common framework to easily de-
velop different types of AI architectures (CNN, ANN, SNN, etc). This initiative should follow 
the examples of GAMAM (Google, Amazon, Meta, Apple, Microsoft). GAMAM have greatly 
understood its value and elaborated business models in line with open source, representing a 
sustainable development approach to support their frameworks19. It should be noted that Open-
Source hardware should not only cover the processors and accelerators, but also all the required 
infrastructure IPs to create Embedded architectures and to ensure that all IPs are interoperable 
and well documented, are delivered with a verification suite and remain maintained constantly 
to keep up with errata from the field and to incorporate newer requirements. The availability 
of automated SoC composition solutions, allowing to build Embedded architectures design 
from IP libraries in a turnkey fashion, is also a desired feature to quickly transform innovation 
into PoC (Proof of Concept) and to bring productivity gains and shorter time-to-market for 
industrial projects.  
 
The extended GAMAM and the BAITX also have large in-house databases required for the 
training and the computing facilities. In addition, almost all of them are developing their chips 
for DL (e.g. Google with its line of TPUs) or made announcement that they will. The US and 
Chinese governments have also started initiatives in this field to ensure that they will remain 
prominent players in the field and it is a domain of competition. 
 
It will be a challenge for Europe to excel in this race, but the emergence of AI at the edge, and 
its know-how in embedded systems, might be winning factors. However, the competition is 
fierce and the big names are in with big budgets and Europe must act quickly, because US and 
Chinese companies are already also moving in this "intelligence at the edge" direction (e.g. 
with Intel Compute Stick, Google's Edge TPU, Nvidia's Jetson Nano and Xavier, and multiples 
start-ups both in US and China, etc. ). 
 
Recently, the attention to the identification of sustainable computing solutions in modern dig-
italization processes has significantly increased. Climate changes and initiative like the Euro-
pean Green Deal20 are generating more sensitivity to sustainability topics, highlighting  the 
need to always consider the technology impact on our planet, which has a delicate equilibrium 
with limited natural resources21. The computing approaches available today, as cloud compu-
ting,  are in the list of the technologies that could potentially lead to unsustainable impacts. A 
recent study22 has clearly confirmed the importance that edge computing plays for 

 

19 See e.g. DL networks with Tensorflow at Google, PyTorch / Caffe at Facebook, CNTK at Microsoft, Watson at 
IBM, DSSTNE at Amazon 
20 https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en 
21 Nardi, B., Tomlinson, B., Patterson, D.J., Chen, J., Pargman, D., Raghavan, B., Penzenstadler, B.: Computing 
within limits. Commun. ACM. 61, 86–93 (2018). 
22 Hamm, Andrea & Willner, Alexander & Schieferdecker, Ina. (2020). Edge Computing: A Comprehensive 
Survey of Current Initiatives and a Roadmap for a Sustainable Edge Computing Development. 
10.30844/wi_2020_g1-hamm. 



 

 

sustainability but, at the same time, highlighted the necessity of increasing the emphasis on 
sustainability, remarking that “research and development should include sustainability con-
cerns in their work routine” and that “sustainable developments generally receive too little 
attention within the framework of edge computing”. The study identifies three sustainability 
dimensions (societal, ecological and economical) and proposes a roadmap for sustainable edge 
computing development where the three dimensions are addressed in terms of security/privacy, 
real-time aspects, embedded intelligence and management capabilities. 
 
Market perspectives 
Several market analysis studies, although they don't give the same values, show the huge mar-
ket perspectives for the AI use in the next years.   
 
According to the ABI Research, it is expected that 1.2 billion devices capable of on-device AI 
inference will be shipped in 2023, with 70% of them coming from mobile devices and weara-
bles. The market size for ASIC responsible for edge inference is expected to reach US$4.3 
billion by 2024 including embedded architectures with integrated AI chipset, discrete ASIC, 
and hardware accelerators.  
 
From another side, PWC expects that the market for AI-related semiconductors to grow to more 
than US$30bn by 2022. The market for semiconductors powering inference systems will likely 
remain fragmented because potential use cases (e.g. facial recognition, robotics, factory auto-
mation, autonomous driving, and surveillance) will require tailored solutions. In comparison, 
training systems will be primarily based on traditional CPUs, GPUs, FPGAs infrastructures 
and ASICs. 
 
According to McKinsey, it is expected by 2025 that AI-related semiconductors could account 
for almost 20 percent of all demand, which would translate into about $65 billion in revenue 
with opportunities emerging at both data centres and the edge. 
 
According to a recent study, the global AI chip market was estimated to USD 9.29 billion in 
2019 and it is expected to grow to USD 253.30 billion by 2030, with a CAGR of 35.0% from 
2020-2030. 
 
AI components vendors  
In the next few years, the hardware is serving as a differentiator in AI, and AI-related compo-
nents will constitute a significant portion of future demand for different applications. 
 
Qualcomm has launched the fifth generation Qualcomm AI Engine, which is composed of 
Qualcomm Kyro Central Processing Unit (CPU), Adreno Graphics Processing Unit (GPU), 
and Hexagon Tensor Accelerator (HTA).  Developers can use either CPU, GPU, or HTA in the 
AI Engine to carry out their AI workloads. Qualcomm launched also Qualcomm Neural Pro-
cessing Software Development Kit (SDK) and Hexagon NN Direct to facilitate the quantization 
and deployment of AI models directly on Hexagon 698 Processor. 
 
Huawei and MediaTek incorporate their Embedded architectures into IoT gateways and home 
entertainment, and Xilinx finds its niche in machine vision through its Versal ACAP SoC. 
NVIDIA has advanced the developments based on the GPU architecture, NVIDIA Jetson AGX 
platform a high performance SoC that features GPU, ARM-based CPU, DL accelerators and 
image signal processors. NXP has begun adding Al HW accelerators and enablement SW to 
several of their microprocessors and microcontrollers.  



 

 

 
ARM is developing the new Cortex-M55 core designed for machine learning applications and 
used in combination with the Ethos-U55 AI accelerator. Both are designed for resource-con-
strained environments. The new ARM’s cores are designed for customized extensions and for 
ultra-low power machine learning.  
 
 
 

 
 
Figure 2 Example of architecture of a modern SoC (from Paolo Azzoni, see also Chapter 1.3) / Arm’s Cortex-M55 and Ethos-
U55 Tandem. Provide processing power for gesture recognition, biometrics, and speech recognition applications (Source: 
Arm). 

 
Open-source hardware, championed by RISC-V, will bring forth a new generation of open-
source chipsets designed for specific ML and DL applications at the edge. French start-up 
GreenWaves is one of European companies using RISC-V cores to target the ultra-low power 
machine learning space. Its devices, GAP8 and GAP9, use 8- and 9-core compute clusters, the 
custom extensions give its cores a 3.6x improvement in energy consumption compared to un-
modified RISC-V cores. 
 
The development of the neuromorphic architectures is accelerated as the global neuromorphic 
AI semiconductor market size is expected to grow. 

2 Technology-enabled societal benefits 
 
Driven by Moore‘s Law over the last 40 years23, computing and communication brought im-
portant benefits to society. Complex computations in the hands of users and hyper-connectivity 
have been at the source of significant innovations and improvements in productivity, with a 
significant cost reduction for consumer products at a global level, including products with a 
high electronic content, traditional products (e.g. medical and machinery products) and added 
value services. 
Computing is at the heart of a wide range of fields by controlling most of the systems with 
which humans interact. It enables transformational science (Climate, Combustion, Biology, 
 
23 Moore’s law is diminishing, however including Ai and accelerator at the edge might increase Moore's law 
duration, see https://www.synopsys.com/glossary/what-is-sysmoore.html 
 



 

 

Astrophysics, etc.), scientific discovery and data analytics. But the advent of Edge Computing 
and of AI on the edge, enabling complete or partially autonomous cyber-physical systems, 
requires tremendous improvements in terms of semantics and use case knowledge understand-
ing, and of new computing solutions to manage it. Even if deeply hidden, these computing 
solutions directly or indirectly impact our ways of life: consider, for example,  their key role in 
solving the societal challenges listed in the application Chapters, in optimizing industrial pro-
cesses costs, in enabling the creation of cheaper products (e.g. delocalized healthcare).  
They will also enable synergies between domains: e.g., self-driving vehicles with higher relia-
bility and predictability will directly benefit medical systems, consumer smart bracelets or 
smart watches for lifestyle monitoring reduce the impact of health problems24 with a positive 
impact on the healthcare system costs, first-aid and insurance services are simplified and more 
effective thanks to cars location and remote control functionalities.  
These computing solutions introduce new security improvements and threats. Edge Computing 
allows a better protection of personal data, being stored and processed only locally, and this 
ensures the privacy rights required by GDPR. But at the same time, the easy accessibility to 
the devices and new techniques, like AI, generates a unique opportunity for hackers to develop 
new attacks. It is, then, paramount to find interdisciplinary trusted computing solutions and 
develop appropriate counter measures to protect them in case of attacks. For example, Industry 
4.0  and forthcoming Industry 5.025 requires new architectures that are more decentralized, new 
infrastructures and new computational models that satisfy high level of synchronization and 
cooperation of manufacturing processes, with a demand of resources optimization and deter-
minism that cannot be provided by solutions that rely on “distant” cloud platforms or data 
centres26, ensure low-latency data analysis, that are extremely important for industrial applica-
tion27.   
These computing solutions have also to consider the man in the loop: especially with AI, solu-
tions ensuring a seamless connection between man and machine will be a key factor. Eventu-
ally, a key challenge is to keep the environmental impact of these computing solutions under 
control, to ensure the European industry sustainability and competitiveness.  
The following figure illustrates an extract of the challenges and expected market trend of Edge 
Computing and AI at the edge: 
 

 

24  https://indianexpress.com/article/technology/gadgets/apple-watch-panic-attack-detection-feature-
watchos7-6404470/ 
25 https://research-and-innovation.ec.europa.eu/research-area/industry/industry-50_en 
 
26  Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart Factory of Industry 4.0: Key Technologies, 
Application Case, and Challenges. IEEE Access. 6, 6505–6519 (2018). 
27  Jeschke, S., Brecher, C., Meisen, T., Özdemir, D., Eschert, T.: Industrial Internet of Things and Cyber 
Manufacturing Systems. In: Jeschke, S., Brecher, C., Song, H., and Rawat, D.B.(eds.) Industrial Internet of 
Things. pp. 3–19. Springer International Publishing, Cham (2017). 



 

 

 
 
Figure 3 challenges and expected market evolution. 

AI introduces a radical improvement to the intelligence brought to the products through micro-
electronics and could unlock a completely new spectrum of applications and business models. 
The technological progress in microelectronics has increased the complexity of microelectronic 
circuits by a factor of 1000 over the last 10 years alone, with the integration of billions of 
transistors on a single microchip. AI is therefore a logical step forward from the actual micro-
electronics control units and its introduction will significantly shape and transform all vertical 
applications in the next decade.  
AI and Edge Computing have become core technologies for the digital transformation and to 
drive a sustainable economy. AI will allow to analyse data on the level of cognitive reasoning 
to take decisions locally on the edge (embedded artificial intelligence), transforming the Inter-
net of Things (IoT) into the Artificial Intelligence of Things (AIoT). Likewise, control and 
automation tasks, which are traditionally carried out on centralized computer platforms will be 
shifted to distributed computing devices, making use of e.g. decentralized control algorithms. 
Edge computing and embedded intelligence will allow to significantly reduce the energy con-
sumption for data transmissions, will save resources in key domains of Europe’s industrial 
systems, will improve the efficient use of natural resources and will also contribute to improve 
the sustainability of companies. 
 



 

 

 
Figure 4 Illustration of an extract of the challenges and the expected market trend for AI and edge computing AI-Market 
prediction (Hardware & Services) (Source: Tractica, May 2019, McKinsey & Company) 

3 Applications breakthroughs  
 
Technologies allowing low power solutions are almost here. What is now key is to integrate 
these solutions as close as possible to the production of data and sensors.  
The key issues to the digital world are the availability of affordable computing resources and 
transfer of data to the computing node with an acceptable power budget. Computing systems 
are morphing from classical computers with a screen and a keyboard to smart phones and to 
deeply embedded systems in the fabric of things. This revolution on how we now interact with 
machines is mainly due to the advance in AI, more precisely of machine learning (ML) that 
allows machines to comprehend the world not only on the basis of various signal analysis but 
also on the level of cognitive sensing (vision and audio). Each computing device should be as 
efficient as possible and decrease the amount of energy used. 
Low-power neural network accelerators will enable sensors to perform online, continuous 
learning and build complex information models of the world they perceive. Neuromorphic 
technologies such as spiking neural networks and compute-in-memory architectures are com-
pelling choices to efficiently process and fuse streaming sensory data, especially when com-
bined with event-based sensors. Event based sensors, like the so-called retinomorphic cameras, 
are becoming extremely important especially in the case of edge computing where energy could 
be a very limited resource. Major issues for edge systems, and even more for AI-embedded 
systems, is energy efficiency and energy management. Implementation of intelligent power/en-
ergy management policies are key for systems where AI techniques are part of processing sen-
sor data and power management policies are needed to extend the battery life of the entire 
system.  
As extracting useful information should happen on the (extreme) edge device, personal data 
protection must be achieved by design, and the amount of data traffic towards the cloud and 
the edge-cloud can be reduced to a minimum. Such intelligent sensors not only recognize low-
level features but will be able to form higher level concepts as well as require only very little 
(or no) training. For example, whereas digital twins currently need to be hand-crafted and built 
bit-for-bit, so to speak, tomorrow’s smart sensor systems will build digital twins autonomously 
by aggregating the sensory input that flows into them. 
 
To achieve intelligent sensors with online learning capabilities, semiconductor technologies 
alone will not suffice. Neuroscience and information theory will continue to discover new 



 

 

ways28 of transforming sensory data into knowledge. These theoretical frameworks help model 
the cortical code and will play an important role towards achieving real intelligence at the ex-
treme edge. 
AI systems use the training and inference for providing the proper functions of the system, and 
they have significant differences in terms of computing resources provided by the AI chips. 
Training is based on past data using datasets that are analysed, and the findings/patterns are 
built into the AI algorithm. Current hardware used for training needs to provide computation 
accuracy, support sufficient representation accuracy, e.g., floating-point or fixed-point with 
long word-length, large memory bandwidth, memory management, synchronization techniques 
to achieve high computational efficiency and fast write time and memory access to a large 
amount of data29. However, recent research points to increasing training potential for complex 
CNN models even on constrained edge devices.30 
 
Reinforcement learning (RL) is a booming area of machine learning and is based on how agents 
ought to take actions in an environment in order to maximize the notion of cumulative reward. 
Recent work31 develops systems that were able to discover their own reward function from 
scratch. Similarly, Auto-ML allows to determine a “good” structure for a DL system to be 
efficient in a task. But all those approaches are also very compute demanding. 
 
New deep learning models are introduced at an increasing rate and one of the recent one, 
with large applications potential, are transformers. Based on the attention model32 , it is a 
“sequence-to-sequence architecture” that transforms a given sequence of elements into 
another sequence. Initially used for NLP (Natural Language Processing) where it can translate 
one sequence in a first language into another one, or complement the beginning of a text 
with potential follow-up, it is now extended to other domains such a video processing. It is 
also a self-supervised approach: for learning it don’t need labelled examples, but only part of 
the sequence, the remaining part being the “ground truth”.  The biggest models, such a GPT3 
are based on this architecture. GPT3 was in the highlight in may 2020 because of its potential 
use in many different application (the context being given by the beginning sequence) such 
as generating new text, summarizing text, translating language, answering to questions and 
even generating code from specifications. Even if today transformers are mainly used for 
cloud applications, this kind of architecture will certainly ripple down in embedded systems 
in the future. For example, Meta OPT, released in may 2022, has 1/7 of the CO2 footprint of 
GPT3 with similar performances. The new  
GPUs of Nvidia, supports float8 in order to efficiently implement transformers. 
 
 
The inference is the application of the learned algorithm to the real devices to solve specific 
problems based on present data. The AI hardware used for inference needs to provide high 
speed, energy efficiency, low cost, fixed-point representation, efficient reading memory access 
and efficient network interfaces for the whole hardware architecture. The development of AI-
based devices with increased performance, and energy efficiency allows the AI inference "at 

 

28   Even though our understanding of how the brain computes is still in its infancy, important breakthroughs 
in cortical (column) theory have been achieved in the last decade. 
29 GPT-3 175B from OpenAI is trained with 499 Billion tokens (https://lambdalabs.com/blog/demystifying-gpt-
3/ ) and required 3.14E23 FLOPS of computing for training. 
30) https://proceedings.mlr.press/v162/patil22b.html  
31 https://arxiv.org/pdf/2007.08794.pdf 
32 https://arxiv.org/abs/1706.03762 



 

 

the edge" (embedded intelligence) and accelerates the development of middleware allowing a 
broader range of applications to run seamlessly on a wider variety of AI-based circuits. Com-
panies like Google, Gyrfalcon, Mythic, NXP, STMicroelectronics and Syntiant are developing 
custom silicon for the edge. As an example, Google was releasing Edge TPU, a custom pro-
cessor to run TensorFlow Lite models on edge devices. NVidia is releasing the Jetson Orin 
Nano range of products, allowing to perform up to 40 TOPS of sparce neural networks within 
a 15W power range33.  
 
 The Tiny ML community ( https://www.tinyml.org/ ) is bringing Deep Learning to microcon-
trollers with limited resources and at ultra-low energy budget. The MLPerf allows to bench-
mark devices on similar applications ( https://github.com/mlcommons/tiny ), because it is 
nearly impossible to compare performances on figures given by chips providers.   
 
 
 
In summary we see the following disruptions on the horizon, once embedded AI enters the 
application space broadly: 

• Various processing, especially concerning AI functionalities, are moved to local 
devices, such as voice and environment recognition, allowing privacy preserving 
functionalities. 

• The latent intelligence of things will be enabled by Al. 
• Federated functionalities will emerge (increasing the functionality of a device by 

using capabilities, resources, or neighbouring devices). 
• Connected functionalities will also show up: this will extend the control and 

automation of a single system (e.g. a truck, a car) to a network of systems (e.g. a 
truck platoon), resulting in networked control of a cyber-physical system. The benefit 
of this is generally better performance and safety. It will also set the foundation for 
autonomous machines (including vehicles). 

• The detection of events by camera and other long-range sensors (radar, lidar, etc.) is 
coming into action. Retina sensors will ensure low power operation of the system. 
Portable devices for blind people will be developed. 

• The possibilities for disabled people to move their arms and legs comes into reach, 
as AI-conditioned sensors will directly be connected to the brain. 

• The use of conversational interfaces will be drastically increased, improving the 
human machine interface with reliable understanding of natural language. 

 

4 Strategic advantage for EU 
 
Edge computing and Embedded Artificial Intelligence are key enablers for the future, and Eu-
rope should act quickly to play a global role and have a certain level of control of the assets we 
use in Europe. Further development of AI can be a strategic advantage for Europe, but we are 
not in a leading position.  
 
Already today AI is being used as a strategic competitive advantage. Tesla is the first car com-
pany which is marketing a driving-assistance-system as “auto-pilot”. Although it is not quali-
fied to operate without human intervention, it is a significant step forward towards autonomous 
 
33 https://developer.nvidia.com/blog/solving-entry-level-edge-ai-challenges-with-nvidia-jetson-orin-nano/ 



 

 

driving. Behind this feature is one of the strongest AI-processors, which can be found in driver 
assistance systems. However, the chips employed are not freely available on the market, but 
are exclusive for Tesla and they are developed internally now to train their self-learning capa-
bilities. This example shows clearly the importance of system ownership in AI, which must be 
secured for Europe, if its companies want to be able to sell competitive products when AI is 
becoming pervasive.  
In this context, Europe must secure the knowledge to build AI-systems, design AI-chips, pro-
cure the AI-software ecosystem, and master the integration task into its products, and particu-
larly into those products where Europe has a lead today. 
Adapted to the European industry structure, which is marked by a vibrant and versatile ecosys-
tem of SMEs together with larger firms, we need to build and enhance the AI-ecosystem for 
the particular strengths but also weaknesses of Europe. 
A potential approach could be to: 

• To rely on existing application domains where we are strong (e.g. automotive, 
machinery, chemistry, energy, …). 

• Promoting to keep, catch-up and get all expertise in Europe that are required to build 
competitive Edge Computing systems and Embedded Intelligence, allowing us to 
develop solutions that are adapted to the European market and beyond. All the 
knowledge is already present in Europe, but not structured and focused and often the 
target of non-European companies. The European ecosystem is rich and composed of 
many SMEs, but with little focus on common goals and cooperation. 

• Open-source Hardware can be an enabler or facilitator of this evolution, allowing this 
swarm of SMEs to develop solutions more adapted to the diversity of the market.  

• Data-based and knowledge-based modelling combined into hybrid modelling is an im-
portant enabler. 

• Particular advantage will  be cross-domain and cross-technology cooperation between 
various European vendors combining the best hardware and software know-how and 
technologies.   

• Cooperation along and across value chains for both hardware and software experts will 
be crucial in the field of smart systems and the AI and IoT community. 

 
While Europe is recognized for its know-how in embedded systems architecture and soft-
ware, it should continue to invest in this domain to remain at the state of the art, despite 
fierce competition from countries like USA, China, India, etc. From this perspective, the 
convergence between AI and Edge Computing, what we call embedded intelligence, should 
be a top priority. Europe should take benefit of its specificities, such as the drive of the 
“European Green Deal” to make its industry sustainable AND competitive. 
 
European companies are also in the lead for embedded microcontrollers. Automotive, IoT, 
medical applications and all embedded systems utilize many low-cost microcontrollers, inte-
grating a complete system, computing, memory, and various peripherals in a single die. Here, 
pro-active innovation is necessary to upgrade the existing systems with the new possibilities 
from AI, Cyber-Physical Systems and Edge computing, with a focus on local AI. Those new 
applications will require more processing power to remain competitive. In addition, old appli-
cations will require AI-components to remain competitive. But power dissipation must not in-
crease accordingly, in fact a reduction would be required. Europe has lost some ground in the 
processor domain, but AI is also an opportunity to regain parts of its sovereignty in the domain 
of computing, as completely new applications emerge. Mastering key technologies for the 



 

 

future is mandatory to enforce Europe, and for example, to attract young talents and to enables 
innovations for the applications. 
 
Europe no longer has a presence in "classical" computing such as processors for laptops and 
desktop, servers (cloud) and HPC, but the drive towards Edge Computing, part of a computing 
continuum, might be an opportunity to use the solid know how in embedded systems and ex-
tend it with high performance technology to create Embedded (or Edge) High Performance  
Computers (eHPC) that can be used in European meta-edge devices. The initiative of the Eu-
ropean Commission, "for the design and development of European low-power processors and 
related technologies for extreme-scale, high-performance big-data and emerging applications, 
in the automotive sector" could reactivate an active presence of Europe in that field and has led 
to the launch of the "European Processor Initiative – EPI ". New initiatives around RISC-V and 
Open source hardware are also key ingredients to keep Europe in the race. 
 
AI optimized hardware components such as CPUs, GPUs, DPUs, FPGAs, ASICs accelerators 
and neuromorphic processors are becoming more and more important. European solutions ex-
ist, and the knowledge on how to build AI-systems is available mainly in academia. However, 
more EU action is needed to bring this knowledge into real products in view to enhance the 
European industry with its strong incumbent products. Focused action is required to extend the 
technological capabilities and to secure Europe’s industrial competitiveness. A promising ap-
proach to prevent the dependence on closed processing technologies, relies on Open Hardware 
initiatives (Open Compute Project, RISC-V, OpenCores, OpenCAPI, etc.). The adoption of an 
open ecosystem approach, with a globally and incrementally built know-how by multiple ac-
tors, prevents that a single entity can monopolize the market or cease to exist for other reasons. 
The very low up-front cost of open hardware/silicon IP lowers the barrier of innovation for 
small players to create, customize, integrate, or improve Open IP to their specific needs. Thanks 
to Open Hardware freely shared, and to existing manufacturing capabilities that still exist in 
Europe, prototyping facilities and the related know-how, a new wave of European start-ups 
could come to existence, building on top of existing designs and creating significant value by 
adding the customization needed for industries such as automotive, energy, manufacturing or 
health/medical. Another advantage of Open-Source hardware is that the source code is audita-
ble and therefore inspected to ensure quality (and less prone to attack if correctly analysed and 
corrected). 
 
In a world, in which some countries are more and more protectionist, not having high-end 
processing capabilities, (i.e. relying on buying them from countries out of Europe) might be-
come a weakness (leaving for example the learning/training capabilities of AI systems to for-
eign companies/countries). China, Japan, India and Russia are starting to develop their own 
processing capabilities in order to prevent potential shortage or political embargo. 
 
It is also very important for Europe to master the new key technologies for the future, such as 
AI, the drive for more local computing, not only because it will allow to sustain the industry, 
but also master the complete ecosystem of education, job creation and attraction of young tal-
ents into this field while implementing rapidly new measures as presented in Major Challenge 
4. 
 

5 Major challenges 
 



 

 

5.1 For Edge Computing  
 
Four Major Challenges have been identified for the further development of computing sys-
tems, especially in the field of embedded architectures and Edge Computing: 
 

1 Increasing the energy efficiency of computing systems: 
1.a Processing data where it is created. 
1.b Co-design: algorithms, HW, SW and topologies. 

2 Managing the increasing complexity of systems: 
2.a Balanced mechanisms between performance and interoperability. 
2.b Realizing self-X, self-optimize, reconfiguration and self-management. 
2.c Using AI techniques to help in complexity management. 

3 Supporting the increasing lifespan of devices and systems: 
3.a HW supporting software upgradability. 
3.b Improving interoperability (with the same class of application) and between 

classes, modularity and complementarity between generations of devices. 
3.c Developing the concept of 2nd life for components. 
3.d Implementation on the smallest devices, high quality data, meta-learning, neuro-

morphic computing and other novel hardware-architectures. 
4 Ensuring European sustainability in Embedded architectures design: 

4.a Open-source HW. 
4.b Energy efficiency improvement. 
4.c Engineering support to improve sustainable AI, edge computing and 

Embedded architectures. 
 
 
 

5.2 For Embedded Intelligence 
 
The world is more and more connected. Data collection is exploding. Heterogeneity of data 
and solutions, needs of flexibility in calculation between basic sensors and multiple sensors 
with data fusion, protection of data and systems, extreme variety of use cases with different 
data format, connectivity, bandwidth, real time or not, etc … increase the complexity of sys-
tems and their interactions. This leads to systems of systems solutions, distributed between 
deep edge to cloud and possibly creating a continuum in this connected world. 
 
Ultimately, energy efficiency becomes the key criteria as digital world is taking a more and 
more significant percentage of produced electricity. 
 
Embedded Intelligence is then foreseen as a crucial element to allow a soft and optimized op-
eration of distributed systems. It is a powerful tool to achieve goals such as: 

• Power energy efficiency by treating data locally and minimizing the necessary data 
sent to the upper node of network. 

• Securing the data (including privacy) keeping them local. 
• Allowing different systems to communicate to each other and adapt over the time 

(increasing their lifetime). 
• Increasing resilience by learning and becoming more secured, more reliable. 
• Keeping systems always on and accessible towards a network continuum. 



 

 

 
On top, Embedded Intelligence can be installed to all levels of the chain. However, many 
challenges have to be solved to achieve those goals. 
 
First priority is the energy efficiency. The balance between Embedded AI energy consumption 
and  overall energy savings must be carefully reviewed. New innovative architectures and tech-
nologies (Near-Memory-Computing, In-Memory-Computing, Neuromorphic, …) need to be 
developed as well as sparsity of coding and of the algorithm topology (e.g. for Deep Neural 
Network). It also means to carefully choose which data is collected and for which purposes. 
Avoiding data transfers is also key for low power: Neural Networks, where storage (the syn-
aptic weights) and computing (the neurons) are closely coupled lead to architectures which 
may differ from the Von Neumann model where storage and computation are clearly separated. 
Computing In or Near memory are efficient potential architectures for some AI algorithms. 
Second, Embedded AI must be scalable and modular all along the distributed chain, increasing 
flexibility, resilience and compatibility. Stability between systems must be achieved and tested. 
Thus, benchmark and validation tools for Embedded AI and related techniques have to be de-
veloped. 
Third, self-learning techniques (Federative learning, unsupervised learning, ...) will be neces-
sary for fast and automatic adaptation. 
Last but not least, trust in AI is key for societal acceptance. Explainability and Interpretability 
of AI decisions for critical systems is an important factor for AI adoption, together with certi-
fications processes. 
 
Algorithms for Artificial Intelligence can be realized in stand-alone, distributed (federated, 
swarm, …) or centralized solution (of course, not all algorithms can be efficiently implemented 
in the 3 solutions). For energy, privacy and all the reasons explained above, it is preferable to 
have stand-alone or distributed solutions (hence the name “Intelligence at the edge”). The short 
term might be more oriented towards stand-alone AI (e.g. self-driving car) and then distributed 
(or connected, like car2car or car2infrastructure).  
 
Summarizing, four Major Challenges have been identified: 

• Increasing the energy efficiency: 
o Development of innovative (and heterogeneous) hardware architectures: e.g. 

Neuromorphic. 
o Avoiding to move large quantities of data: processing at the source of data, 

sparse data coding, etc. Only processing when it is required (sparse topology, 
algorithms, etc.). 

o Interoperability (with the same class of application) and between classes 
o Scalable and Modular AI. 

• Managing the increasing complexity of systems: 
o Development of trustable AI. 
o Easy adaptation of models. 
o Standardized APIs for hardware and software tool chains, and common descrip-

tions to describe the hardware capabilities. 
• Supporting the increasing lifespan of devices and systems: 

o Realizing self-X (unsupervised learning, transfer learning, etc.). 
o Update mechanisms (adaptation, learning, etc.). 

• Ensuring European sustainability in AI: 



 

 

o Developing solutions that correspond to European needs and ethical 
principles. 

o Transforming European innovations into commercial successes. 
o Cultivating diverse skillsets and expertise to address all parts of the European 

embedded AI ecosystem  
 
Of course, as seen above, all the generic challenges found in Embedded architectures are also 
important for Embedded AI based systems, but we will describe more precisely which is spe-
cific for each subsection (Embedded architectures/Edge computing and Embedded Intelli-
gence). 
 

5.3 Major Challenge 1: increasing the energy efficiency of computing systems 
 

5.3.1 For Edge Computing  
 
The advantages of using digital systems should not be hampered by their cost in terms of en-
ergy. For HPC or data centres, it is clear that the main challenge is not only to reach the “exa-
flops”, but to reach “exaflops” at reasonable energy cost, which impacts the cooling infrastruc-
ture, the size of the “power plug” and globally the cost of ownership. At the other extremity of 
the spectrum, micro-edge devices should work for months on a small battery, or even by scav-
enging their energy from the environment (energy harvesting). Reducing the energy footprint 
of devices is the main charter for fulfilling sustainability and the “European Green deal”. Mul-
timode energy harvesting (e.g. solar/wind, regenerative braking, dampers/shock absorbers, 
thermoelectric, etc.) offers huge potential for electrical vehicles and other battery-, fuel cells -
operated vehicles in addition to energy efficiency design, real-time sensing of integrity, energy 
storage and other functions. 
Power consumption should not be only seen just at the level of the device, but at the level of 
the aggregation of functions that are required to fulfil a task.  
The new semiconductor technology nodes don’t really bring improvement on the power per 
device, Dennard’s scaling is ending and going to a smaller node does not anymore lead to a 
large increase of the operating frequency or a decrease of the operating voltage. Therefore, 
dissipated energy per surface, the power density of devices is increasing rather than decreasing. 
Transistor architectures, such as FinFet, FDSOI, GAA, nanosheets mainly reduce the leakage 
current (i.e. the energy spent by an inactive device). However, transistors made on FDSOI 
substrates achieve the same performance than FinFet transistors at a lower operating voltage, 
reducing dynamic power consumption. 
In addition, comes the memory wall. Today's limitation is not coming from the pure processing 
power of systems but more from the capacity to bring data to the computing nodes within a 
reasonable power budget fast enough. 
 
 
 

 



 

 

 
Figure 5 Energy for compute and data movement34 This explain the order of magnitude of the problem of data movement, 
and this problem is still relevant in all technology nodes 

35 

Furthermore, the system memory is only part of a broader Data Movement challenge which 
requires significant progress in the data access/storage hierarchy from registers, main memory 
(e.g. progress of NVM technology, such as the Intel’s 3D-xpoint, etc.), to external mass storage 
devices (e.g. progress in 3D-nand flash, SCM derived from NVM, etc.). In a modern system, 
large parts of the energy is dissipated in moving data from one place to another. For this reason, 
new architectures are required, such as computing in or near memory, neuromorphic archi-
tectures (also where the physics of the NVM -  PCM, CBRAM, MRAM, OXRAM, ReRAM, 
FeFET, etc. - technology can be used to compute )  and lower bit count processing are of pri-
mary importance.  
 
 
34 Source: S. Horst, Optical Interconnect Conference, 2013 
35 Source: S. Horst, Optical Interconnect Conference, 2013 



 

 

Power consumption can be reduced by local treatment of collected data, not only at circuit 
level, but also at system level or at least at the nearest from the sensors in the chain of data 
transfer towards the data centre (for example: in the gateway). Whereas the traditional approach 
was to have sensors generate as much data as possible and then leave the interpretation and 
action to a central unit, future sensors will evolve from mere data-generating devices to devices 
that generate semantic information at the appropriate conceptual level. This will obviate the 
need for high bit rates and thus power consumption between the sensors and the central unit. 
In summary, raw data should be transformed into relevant information (what is really useful) 
as early as possible in the processing continuum to improve the global energy efficiency: 

• Only end or middle points equipment are working, potentially with low or sleeping 
consumption modes. 

• Data transfer through network infrastructures is reduced. Only necessary data is sent 
to the upper level. 

• Usage of computing time in data centres is also minimized.  
• The development of benchmarks and standardization for HW/SW and data sets could 

be an appropriate measure to reduce power consumption. Hence, energy 
consumption evaluation will be easy and include the complete view from micro-edge 
to cloud. 

 
5.3.1.1 Key focus areas 

 
To increase the energy efficiency of computing systems, especially in the field of systems for 
AI and Edge Computing requires the development of innovative hardware architectures at all 
levels with their associated software architectures and algorithms:  

• At technology level (FinFet, FDSOI, silicon nanowires or nanosheets), technologies are 
pushing the limits to be Ultra-low power. On top, advanced architectures are moving 
from Near-Memory computing to In-Memory computing with potential gains of 10 to 
100 times. Technologies related to advanced integration and packaging have also 
recently emerged (2.5D, chiplets, active interposers, ...) that open up innovative 
design possibilities, particularly for what concerns tighter sensor-compute and 
memory-compute integration.    

• At device level, several type of circuit architectures are currently running, tested, or 
developed worldwide. The list is moving from the well-known CPU to some more and 
more dedicated accelerators integrated in Embedded architectures (GPU, DPU, TPU, 
NPU, DPU, …) providing accelerated data processing and management capabilities, 
which are implemented very variously going from fully digital to mixed or full analog 
solutions:  

o Fully digital solutions have addressed the needs of emerging application loads 
such as AI/DL workloads using a combination of parallel computing (e.g., SMP 
and GPU) and accelerated hardware primitives (such as systolic arrays), often 
combined in heterogeneous Embedded architectures. Low-bit-precision (8 bit 
integer or less) computation as well as sparsity-aware acceleration have been 
shown as effective strategies to minimize the energy consumption per each 
elementary operation in regular AI/DL inference workloads; on the other hand, 
there remain many challenges in terms of hardware capable of 
opportunistically exploiting the characteristics of more irregular mixed-
precision networks. Applications, including AI/DL also require further 
development due to their need for more flexibility and precision in numerical 



 

 

representation (32 or 16 bit floating point), which puts a limit to the amount 
of hardware efficiency that can be achieved on the compute side. 

o Avoiding to move data: this is crucial because the access energy of any off-chip 
memory is currently 10-100x more expensive than access to on-chip memory. 
Emerging non-volatile memory technologies such as MRAM, with asymmetric 
read/write energy cost, could provide a potential solution to relieve this issue, 
by means of their greater density at the same technology node. Near-Memory 
Computing (NMC) and In-Memory Computing (IMC) techniques move part of 
the computation near or inside memory, respectively, further offsetting this 
problem. While IMC in particular is extremely promising, careful optimization 
at the system level is required to really take advantage of the theoretical peak 
efficiency potential. 

o Another way is also to perform invariant perceptive processing and produce 
semantic representation with any type of sensory inputs.  

• At system level, micro-edge computing near sensors (i.e integrating processing inside 
or very close to the sensors or into local control) will allow Embedded architectures to 
operate in the range of 10 mW to 100 mW with an estimated energy efficiency in the 
order of 100s of GOPs/Watt up to a few TOPs/Watt in the next 5 years. This could be 
negligible compared to the consumption of the sensor (for example, a Mems 
microphone can consume a few mA). On top, the device itself can go in standby or in 
sleep mode when not used, and the connectivity must not be permanent. Devices 
currently deployed on the edge rarely process data 24/7 like data centres: to minimize 
global energy, a key requirement for future edge Embedded architectures is to 
combine high performance “nominal” operating modes with lower-voltage high 
compute efficiency modes and, most importantly, with ultra-low-power sleep states, 
consuming well below 1 mW in fully state-retentive sleep, and less than 1-10 uW in 
deep sleep. The possibility to leave Embedded architectures in an ultra-low power 
state for most of the time has a significant impact on the global energy consumed. The 
possibility to orchestrate and manage edge devices becomes fundamental from this 
perspective and should be supported by design. On the contrary, data servers are 
currently always on even if they are loaded only at 60% of their computing capability.  

• At data level, memory hierarchies will have to be designed taking into account the 
data reuse characteristics and access patterns of algorithms, which strongly impact 
load and store access rate and hence, the energy necessary to access each memory in 
the hierarchy. For example (but not only), weights and activations in a Deep Neural 
Network have very different access patterns and can be deployed to entirely separate 
hierarchies exploiting different combinations of external Flash, DRAM, non-volatile 
on-chip memory (MRAM, FRAM…) and SRAM.   

• At tools level, HW/SW co-design of system and their associated algorithms are 
mandatory to minimize the data moves and optimally exploit hardware resources, 
particularly if accelerators are available, and thus optimize the power consumption. 

 
The challenge is not only at the component level, but also at the system and even infrastructure 
level: for example, the Open Compute Project was started by Facebook with the idea of deliv-
ering the most efficient designs for scalable computing through an open-source hardware com-
munity. 
 



 

 

5.3.2 For Embedded Intelligence 
 
Training AI models can be very energy-demanding. As an example, according to a recent 
study36, the model training process for natural-language processing (NLP, that is, the sub-field 
of AI focused on teaching machines to handle human language) could end emitting as much 
carbon as five cars in their lifetimes37. However, if the inference of that trained model is exe-
cuted billions of times (e.g., by billion users' smartphones), its carbon footprint could even 
offset the training one. Another analysis38, published by the OpenAI association, unveils a dan-
gerous trend: "since 2012, the amount of compute used in the largest AI training runs has been 
increasing exponentially with a 3.5 month-doubling time (by comparison, Moore's law had a 
2-years doubling period)". These studies reveal that the need for computing power (and asso-
ciated power consumption) for training AI models is dramatically widening. Consequently, the 
AI training processes need to turn greener and more energy-efficient. 
 
 
 

 
 
 
Figure 6 Evolution of the size of the most advanced deep learning networks (from https://arxiv.org/abs/2202.05924 )  

For a given use-case, the search for the optimal solution should meet multi-objective trade-offs 
among accuracy of the trained model, its latency, safety, security, and the overall energy cost 
of the associated solution. The latter means not only the energy consumed during the inference 
phase but also considering the frequency of use of the inference model and the energy needed 
to train it.  
 
In addition, novel learning paradigms such as transfer learning, federated learning, self-super-
vised learning, online/continual/incremental learning, local and context adaptation, etc., should 
 

36 https://arxiv.org/pdf/1906.02243.pdf 
37 https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-
carbon-as-five-cars-in-their-lifetimes/ 
38 https://openai.com/blog/ai-and-compute/ 



 

 

be preferred not only to increase the effectiveness of the inference models but also as an attempt 
to decrease the energy cost of the learning scheme. Indeed, these schemes avoid retraining 
models from scratch all the times or reduce the number and size of the model parameters to 
transmit back and forth during the distributed training phase. 
 
Although significant efforts have been focused in the past to enable ANN-based inference on 
less powerful computing integrated circuits with lower memory size, today, a considerable 
challenge to overcome is that non-trivial DL-based inference requires significantly more than 
the 0.5-1 MB of SRAM, that is the typical memory size integrated on top of microcontroller 
devices. Several approaches and methodologies to artificially reduce the size of a DL model 
exist, such as quantizing the neural weights and biases or pruning the network layers. These 
approaches are fundamental also to reduce the power consumption of the inference devices, 
but clearly, they cannot represent the definitive solution of the future.  
 
We witness great development activity of computing systems explicitly supporting novel AI-
oriented use cases, spanning different implementations, from chips to modules and systems. 
Moreover, as depicted in the following figure, it covers large ranges of performance and power, 
from high-end servers to ultra-low power IoT devices. 
 
 

 
 
Figure 7 Landscape of AI chips according to their peak power consumption and peak performance39. 

To efficiently support new AI-related applications, for both, the server and the client on the 
edge side, new accelerators need to be developed. For example, DL does not usually need a 
32/64/128-bit floating point for its learning phase, but rather variable precision including ded-
icated formats such as bfloats. However, a close connection between the compute and storage 
parts are required (Neural Networks are an ideal "compute in memory" approach). Storage also 

 

39 Source: AI Accelerator Survey and Trends, Albert Reuther, Peter Michaleas, Michael Jones, Vijay 
Gadepally, Siddharth Samsi, Jeremy Kepner, 2021 https://arxiv.org/abs/2109.08957 
 



 

 

needs to be adapted to support AI requirements (specific data accesses, co-location compute 
and storage), memory hierarchy, local vs. cloud storage. 
 
Similarly, at the edge side, accelerators for AI applications will particularly require real-time 
inference, in view to reduce the power consumption. For DL applications, arithmetic operations 
are simple (mainly multiply-accumulate) but they are done on data sets with a very large set of 
data and the data access is therefore challenging. In addition, clever data processing schemes 
are required to reuse data in the case of convolutional neural networks or in systems with shared 
weights. Computing and storage are deeply intertwined. And of course, all the accelerators 
should fit efficiently with more conventional systems. 
 
Reducing the size of the neural networks and the precisions of computation is key to allow 
complex deep neural networks to run on embedded devices. This can be achieved either by 
pruning the topology of the networks, and/or by reducing the number of bits storing values of 
weight and neuron values. These processes can be done during the learning phase, or just after 
a full precision learning phase, or can be done (with less performances) independently of the 
learning phase (example: post-training quantization). The pruning principle is to eliminate 
nodes that have a low contribution to the final result. Quantization consists either in decreasing 
the precision of the representation (from float 32 to float 16 or even float8, as supported by the 
Nvidia GPUs mainly for Transformers networks), or to change the representation from float to 
integers. For the inference phase, current techniques allow to use 8-bit representations with a 
minimal loss of performances, and sometimes to reduce further the number of bits, with an 
acceptable reduction of performance or small increase of the size of the network. Most major 
developments environments (TensorFlow Lite41, N2D242, etc) support post-training quantiza-
tion, and the Tiny ML community is actively using it. Supporting better tools and algorithms 
to reduce size and computational complexity of  Deep Neural Networks is of paramount im-
portance for allowing efficient AI applications to be executed at the edge.  
 

 
41 https://www.tensorflow.org/lite/performance/post_training_quantization 
 
42 https://github.com/CEA-LIST/N2D2 



 

 

 
Results of various quantization methods versus Top-1 ImageNet accuracy  
 
 
Finally, new approaches can be used for computing Neural-Networks, such as analogue com-
puting, or using the properties of specific materials to perform the computations (although with 
low precision and high dispersion, but the Neural Networks approach is able to cope with these 
limitations). 
 
Besides DL, the "Human Brain Project", a H2020 FET Flagship Project which targets the fields 
of neuroscience, computing, and brain-related medicine, including, in its SP9, the Neuromor-
phic Computing platform SpiNNaker and BrainScaleS. This Platform enable experiments with 
configurable neuromorphic computing systems. 
 

5.3.2.1 Key focus areas 
 
The focus areas rely on Europe maintaining a leadership role in embedded systems, CPS, com-
ponents for the edge (e.g., sensors, actuators, embedded microcontrollers), and applications in 
automotive, electric, connected, autonomous, and shared (ECAS) vehicles, railway, avionics, 
and production systems. Leveraging AI in these sectors will improve the efficient use of energy 
resources and increase productivity. 
 
However, running computation-intensive ML/DL models locally on edge devices can be very 
resource-intensive, requiring, in the worst-case, high-end processing units to be equipped in 
the end devices. Such stringent requirement not only increases the cost of edge intelligence but 
can also become either unfriendly or incompatible with legacy, non-upgradeable devices en-
dowed with limited computing and memory capabilities. Fortunately, inferring in the edge with 
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the most accurate DL model is not a standard requirement. It means that, depending on the use 
case, different trade-offs among inference accuracy, power consumption, efficiency, security, 
safety, and privacy can be met. This awareness can potentially create a permanently accessible 
AI continuum. Indeed, the real game-changer is to shift from a local view (the device) to the 
"continuum" (the whole technology stack) and find the right balance between edge computa-
tion (preferable whenever possible, because it does not require data transfer) and data trans-
mission towards cloud servers (more expensive in terms of energy). The problem is complex 
and multi-objective, meaning that the optimal solution may change over time, needing to con-
sider changing cost variables and constraints. Interoperability/compatibility among devices and 
platforms is essential to guarantee efficient search strategies in this search space.  
 
AI accelerators are crucial elements to improve efficiency and performances of existing sys-
tems (to the cost of more software complexity, as described in the next challenge, but one goal 
will be to automatize this process). For the training phase, the large amount of variable preci-
sion computations requires accelerators with efficient memory access and large multi-computer 
engine structures. In this phase, it is necessary to access large storage areas containing training 
instances. However, the inference phase requires low-power efficient implementation with 
closely interconnected computation and memory. In this phase, efficient communication be-
tween storage (i.e., the synapses for a neuromorphic architecture) and computing elements (the 
neurons for neuromorphic) are paramount to ensure good performances. Again, it will be es-
sential to balance the need and the cost of the associated solution. For edge/power-efficient 
devices, perhaps not ultra-dense technologies are required; cost and power efficiency matter 
perhaps more than raw computational performances. It is also important to develop better tools 
and algorithms to reduce size and computational complexity of  Deep Neural Networks for 
allowing efficient AI applications to be executed at the edge.  
 
 
Other architectures (neuromorphic) need to be further investigated and to find the sweet use 
case spot. One key element is the necessity to save the neuronal network state after the training 
phase as reinitializing after switch-off will increase the global consumption. The human brain 
never stops. 
 
It is also crucial to have a co-optimization of the software and hardware to explore more ad-
vanced trade-offs. Indeed, AI, and especially DL, require optimized hardware support for effi-
cient realization. New emerging computing paradigms such as mimicking the synapses, using 
unsupervised learning like STDP (Spike-timing- dependent plasticity) might change the game 
by offering learning capabilities at relatively low hardware cost and without needing to access 
large databases. Instead of being realized by ALU and digital operators, STDP can be realized 
by the physics of some materials, such as those used in Non-Volatile Memories. These novel 
approaches need to be supported by appropriate SW tools to become viable alternatives to ex-
isting approaches. 
 
Developing solutions for AI at the edge (e.g., for self-driving vehicles, personal assistants, and 
robots) is more in line with European requirements (privacy, safety) and know-how (embedded 
systems). Solutions at the extreme edge (small sensors, etc.) will require even more efficient 
computing systems because of their low cost and ultra-low power requirements. 
 
The Deep learning approach is based on the neural networks paradigm coming initially from 
the work of Mc Culloch and Pitts, where a neuron is a small computing element connected to 
its pairs by weights called synapses. It is a structure where computing and storage are naturally 



 

 

closely mixed. It is therefore important to address memories and topologies in such AI archi-
tectures. Sparsity of coding and of the neural network topology are important to reduce energy 
consumption, both by decreasing data communication and taking benefit of the sparsity of cod-
ing and of the topology. 
 
 

5.4 Major Challenge 2: managing the increasing complexity of systems: 
5.4.1 For Edge Computing  

 
 
The increasing complexity of electronic embedded systems, hardware and software algorithms 
has a significant impact on the design of applications, engineering lifecycle and the ecosystems 
involved in the product and service development value chain.  
 
The complexity is the result of the incorporation of hardware, software and connectivity into 
systems, and their design to process and exchange data and information without addressing the 
architectural aspects. As such, architectural aspects such as optimizing the use of resources, 
distributing the tasks, dynamically allocating the functions, providing interoperability, com-
mon interfaces and modular concepts that allow for scalability are typically not sufficiently 
considered. Today's complexity to achieve higher automation levels in vehicles and industrial 
systems is best viewed by the different challenges which need to be addressed when increasing 
the number of sensors and actuators offering a variety of modalities and higher resolutions. 
These sensors and actuators are complemented by ever more complex processing algorithms 
to handle the large volume of rich sensor data. The trend is reflected in the value of semicon-
ductors across different vehicle types. While a conventional automobile contains roughly $330 
value of semiconductor content, a hybrid electric vehicle with a full sensor platform can contain 
up to $1000 and 3,500 semiconductors. Over the past decade, the cost contribution for elec-
tronics in vehicles has increased from 18% to 20% to about 40% to 45%, according to Lam 
Research. The numbers will further increase with the introduction of autonomous, connected, 
and electric vehicles which make use of AI-based HW/SW components. 
 
This approach necessitates the use of multiple high-performance computing systems to support 
the cognition functions. Moreover, the current Electrical and Electronic (E/E) architectures 
impose that the functional domains are spread over separated and dedicated Electronic Control 
Units (ECU’s). This approach hampers upscaling of the automation functionality and obstructs 
effective reasoning and decision making.  
 

5.4.1.1 Key focus areas 
 
The major recommendations at the Embedded architectures infrastructure level are: 

• Improving interoperability of systems: this is mainly covered by design methodology, 
where tools should be able to build a system from IPs coming from various sources. 
That means also that the description of the IPs, even if they are proprietary (black 
box), should contain all the view required to smoothly integrate them together. This 
is also a requirement for Open-Source Hardware. This can be extended at the level of 
integration in 2.5D systems based on interposers and chiplets: an ecosystem will only 
proliferate and flourish if a large catalogue of chiplets (in this case) are available and 
easily connected. As infrastructure for Embedded architectures, the “common 



 

 

platform” initiated by the European Processor Initiative (EPI) is an example of a 
template that allows to build different ICs with minimum efforts.  

• Facilitating the easy addition of modules to a system: what is done at the Embedded 
architectures level can also be promoted at the system levels, where reuse of existing 
core could simplify the design, but perhaps at a cost of more complex software. 

• Developing common interfaces and standards: this a basic element if we want to 
increase the productivity by reuse and the efficiency by using interoperability. 

• Using AI techniques to help complexity management: existing Embedded 
architectures are so complex that humans cannot understand all the interactions and 
corner cases. Tools and techniques using Operational Research or Artificial 
Intelligence can be used to explore the space of conception, and recommend optimum 
combinations and architectures. Automated Design Space Exploration is an emerging 
field, and AI is already used in backend tools by the major CAD tools providers (and by 
Google to design their TPUs). 

Similarly, the solutions and recommendations for Edge devices are similar of those for embed-
ded computing: 

• Improving interoperability of systems 
• Facilitating the easy addition of modules to a system  
• Developing common interfaces and standards, standardized APIs for hardware and 

software tool chains 
• Using AI techniques to help complexity management 

 
5.4.2 For Embedded Intelligence  

 
To still achieve the required increased level of automation in automotive, transportation and 
manufacturing, disruptive frameworks are being considered offering a higher order of intelli-
gence. Several initiatives to deliver hardware and software solutions for increased automation 
are ongoing. Companies like Renesas, NVIDIA, Intel/Mobileye, and NXP build platforms to 
enable Tier1s and OEMs to integrate and validate automated drive functions. Still, the “verti-
cal” distribution of AI functionality is difficult to manage across the traditional OEM/Tier-
1/Tier-2 value chain. Due to the long innovation cycle associated with this chain, vertically 
integrated companies such as Tesla/Waymo currently seem to hold an advantage in the space 
of autonomous driving. Closed AI component ecosystems represent a risk as transparency in 
decision making could prove hard to achieve and sensor level innovation may be stifled if 
interfaces are not standardized. Baidu (Apollo), Lyft, Voyage and Comma.ai take a different 
approach as they develop software platforms which are open and allow external partners to 
develop their own autonomous driving systems through on-vehicle and hardware platforms. 
Such open and collaborative approach might be the key to accelerate development and market 
adoption. 
 
Next generation energy- and resource-efficient electronic components and systems that are 
connected, autonomous and interactive will require AI-enabled solutions that can simplify the 
complexity and implement functions such as self-configure to adapt the parameters and the 
resource usage based on context and real time requirements. The design of such components 
and systems will require a holistic design strategy based on new architectural concepts and 
optimized HW/SW platforms. Such architectures and platforms will need to be integrated into 
new design operational models that consider hardware, software, connectivity and sharing of 
information (1) upstream from external sources like sensors to fusion computing/decision 



 

 

processes, (2) downstream for virtualization of functions, actuation, software updates and new 
functions, and (3) mid-stream information used to improve the active user experience and func-
tionalities. 
 
Still, it is observed that the strategical backbone technologies to realize such new architectures 
are not available. These strategical backbone technologies include smart and scalable elec-
tronic, components and systems (controllers, sensors, and actuators), the AI accelerator hard-
ware and software, the security engines, and the connectivity technologies. A holistic end-to-
end approach is required to manage the increasing complexity of systems, to remain competi-
tive and to continuously innovate the European electronic components and systems ecosystem. 
This end-to-end approach should provide new architecture concepts, HW/SW platforms that 
allow for the implementation of new design techniques, system engineering methods and lev-
erage AI to drive efficiencies in the processes.   
 
Based on the European's semiconductor expertise and in view of its strategic autonomy, we see 
an incentive for Europe to build an ecosystem on electronic components, connectivity and soft-
ware AI, especially when considering that the global innovation landscape is changing rapidly 
due to the growing importance of digitalization, intangible investment and the emergence of 
new countries and regions. As such, a holistic end-to-end AI technology development approach 
enables the advances in other industrial sectors by expanding the automation levels in vehicles 
and industrial systems while increasing the efficiency of power consumption, integration, mod-
ularity, scalability, and functional performance. 
The new strategy should be anchored into a new bold digitalization transformation as digital 
firms perform better and are more dynamic: they have higher labour productivity, grow faster, 
and have better management practices. 
The reference architectures for future AI-based systems need to provide modular and scalable 
solutions that support interoperability and interfaces among platforms that can exchange infor-
mation and share computing resources to allow the functional evolution of the silicon-born 
embedded systems. 
The evolution of the AI-based components and embedded systems is no longer expected to be 
linear and will depend on the efficiency and the features provided by AI-based algorithms, 
techniques and methods applied to solve specific problems. This allows to enhance the capa-
bilities of the AI-based embedded systems using open architecture concepts to develop 
HW/SW platforms enabling continuous innovation instead of patching the existing designs 
with new features that ultimately will block the further development of specific components 
and systems.  
 
Europe has an opportunity to develop and use open reference architecture concepts for accel-
erating the research and innovation of AI-based components and embedded systems at the edge 
and deep-edge that can be applied across industrial sectors. The use of reference open archi-
tecture will support the increase of stakeholder diversity and AI-based embedded systems, 
IoT/IIoT ecosystems. This will result in a positive impact on market adoption, system cost, 
quality and innovation, and will support to ensure the development of interoperable and secure 
embedded systems supported by a strong European R&I&D ecosystem. 
 
The majors European semiconductor companies are already active and competitive in the do-
main of AI at the edge: 
 

• Infineon is well positioned to fully realize AI’s potential in different tech domains. By 
adding AI to its sensors, e.g., utilizing its PSOC microcontrollers and its Modus toolbox, 



 

 

Infineon opens the doors to a range of application fields in edge computing and IoT. 
First, Predictive Maintenance: Infineon’s sensor-based condition monitoring makes 
IoT work. The solutions detect anomalies in heating, ventilation and air conditioning 
(HVAC) equipment as well as motors, fans, drives, compressors and refrigeration. They 
help to reduce breakdowns, maintenance costs and extend the lifetime of technical 
equipment. Second, Smart Homes and Buildings: Infineon’s solutions make buildings 
smart on all levels with AI-enabled technologies, e.g., building’s domains such as 
HVAC, lighting or access control become smarter with presence detection, air quality 
monitoring, default detection and many other use cases. Infineon’s portfolio of 
sensors, microcontrollers, actuators and connectivity solutions enables buildings to 
collect meaningful data, create insights and take better decisions to optimize its 
operations according to its occupants’ needs. Third, Health and Wearables: the next 
generation health and wellness technology is enabled to utilize sophisticated AI at the 
edge and is empowered with sensor, compute, security, connectivity and power 
management solutions, forming the basis for health-monitoring algorithms in lifestyle 
and medical wearable devices supplying highest precision sensing of altitude, location, 
vital signs and sound while also enabling lowest power consumption.  Fourth, 
Automotive: AI is enabled for innovative areas such as eMobility, automated driving 
and vehicle motion. The latest microcontroller generation AURIX™ TC4x with the 
Parallel Processing Unit (PPU) provides affordable embedded AI and safety for the 
future connected, eco-friendly vehicle. 

 
• NXP, a semiconductor manufacturer with strong European roots, has begun adding Al 

HW accelerators and enablement SW to several of their microprocessors and 
microcontrollers targeting the automotive, consumer, health and industrial market. 
For automotive applications, embedded AI systems process data coming from the 
onboard cameras and other sensors to detect and track traffic signs, road users and 
other important cues. In the consumer space the rising demand for voice interfaces 
led to ultra-efficient implementations of keyword spotters, whereas in the health 
sector AI is used to efficiently process data in hearing aids and smartwatches. The 
industrial market calls for efficient AI implementations for visual inspection of goods, 
early onset fault detection in moving machinery and a wide range of customer specific 
applications. These diverse requirements are met by pairing custom accelerators, 
multipurpose and efficient CPUs with a flexible SW tooling to support engineers 
implementing their system solution. 
 

• STMicroelectronics integrated Edge AI as one of the main pillars of its product strategy 
plan. By combining AI-ready features in its hardware products to a comprehensive 
ecosystem of software and tools, ST ambitions to overcome the uphill challenge of AI 
: opening technology access to all and for a broad range of applications. For the smart 
building domain, the STM32 microcontrollers embed optimized machine learning 
algorithms to determine room occupancy, count people in a corridor or automatically 
read water meters. The AI code compression is performed by users through the low-
code STM32Cube.ai optimizer tool which enables a drastic reduction of the power 
consumption while maintaining the accuracy of the prediction. In Anomaly detection 
for industry 4.0, NanoEdge AI studio, an Auto-ML software for edge-AI, automatically 
finds and configure the best AI library for STM32 microcontroller or smart MEMS that 



 

 

contain ST’s embedded Intelligent Sensor Processing Unit (ISPU) while being able to 
do learning on device. It results in the early detection of arc-fault or technical 
equipment failure and extend the lifetime of industrial machines. Designers can now 
use NanoEdge AI Studio to distribute inference workloads across multiple devices 
including microcontrollers (MCUs) and sensors with ISPUs in their systems, 
significantly reducing application power consumption. Always-on sensors that contain 
the ISPU can perform event detection at very low power, only waking the MCU when 
the sensor detects anomalies. 

 
 
Europe can drive the development of scalable and connected HW/SW AI-based platforms. 
Such platforms will efficiently share resources across platforms and optimize the computation 
based on the needs and functions. As such, the processing resource will dynamically adjust the 
type, speed and energy consumption of processing resource depending on the instantaneous 
required functionality. 
This can be extended at the different layers of the architecture by providing scalable concepts 
for hardware, software, connectivity, AI algorithms (inference, learning) and the design of flex-
ible heterogenous architectures that optimize the use of computing resources. 
 
Optimizing the performance parameters of AI-based components, embedded systems within 
the envelope based on energy efficiency, cost, heat dissipation, size, weight using reference 
architecture that can scale across the information continuum from end point deep-edge to edge, 
cloud and data centre. 
 
 

5.4.2.1 Key focus areas 
 

• Evolving the architecture, design and semiconductor technologies of AI-based 
components and systems, integration into IoT/IIoT semiconductor devices with 
applications in automation, mobility, intelligent connectivity, enabling seamless 
interactions and optimized decision-making for semi-autonomous and autonomous 
systems. 

• New AI-based HW/SW architectures and platforms with increased dependability, 
optimized for increased energy efficiency, low cost, compactness and providing 
balanced mechanisms between performance and interoperability to support the 
integration into various applications across the industrial sectors.  

• Edge and deep-edge components, architectures, and interoperability concepts for AI 
edge-based platforms for data tagging, training, deployment, and analysis. Use and 
development of standardized APIs for hardware and software tool chains. 

• Deterministic behaviours, low latency and reliable communications are also important 
for other vertical applications, such as connected cars, where edge computing and AI 
represent “the” enabling technology, independently from the sustainability aspects. 
The evolution of 5G is strongly dependent on edge computing and multi-access edge 
computing (MEC) developments. 

• Developing new design concepts for AI born embedded systems to facilitate trust by 
providing the dependable design techniques, that enable the end-to-end AI systems 
to be scalable, make correct decisions in repetitive manner, provide mechanisms to 



 

 

be transparent, explainable, interpretable and able to achieve repeatable results and 
embed features for AI model’s and interfaces' interpretability.  

• Distributed edge computing architecture with AI models running on distributed 
devices, servers, or gateways away from data centres or cloud servers. 

• Scalable hardware agnostics AI models capable of delivering comparable performance 
on different computing platforms, (e.g. Intel, AMD or ARM architectures). 

• Seamless and secure integration at HW/SW embedded systems with the AI models 
integrated in the SW/HW and APIs to support configurable data integrated with 
enterprise authentication technologies through standards-based methods. 

• Development of AI based HW/SW for multi-tasking and provide techniques to adapt 
the trained model to produce close or expected outputs when provided with a 
different but related set of data. The new solutions must provide dynamic transfer 
learning, by assuring the transfer of training instance, feature representation, 
parameters, and relational knowledge from the existing trained AI model to a new one 
that addresses the new target task. 

• HW/SW techniques and architectures for self-optimize, reconfiguration and to self-
manage the resource demands (e.g. memory management, power consumption, 
model selection, hyperparameter tuning for automated machine learning scenarios, 
etc.). 

• Edge-based robust energy efficient AI-based HW/SW for processing incomplete 
information with incomplete data, in real time. 

• End-to-end AI architecture including the continuum of AI-based techniques, methods 
and interoperability across sensor-based system, device-connected system gateway-
connected system, edge processing units, on-premises servers, etc. 

• Developing tools and techniques helping in the management of complexity, e.g. using 
AI methods. 

 
 

5.5 Major Challenge 3: supporting the increasing lifespan of devices and systems 
5.5.1 For Edge Computing  

 
Increasing lifetime of an electronic object is very complex and has multiple facets. It covers 
the life extension of the object itself up to the move of some of its critical parts in other objects 
and ultimately in the recycling of raw material in new objects. This domain of lifetime exten-
sion is very error prone as it is extremely easy to confuse some very different concepts such as 
upgradability, reuse up to recycling. 
The first level of lifetime extension is clearly the upgrade to avoid replacing an object but 
instead improving its features and performance through either hardware or software update. 
This concept is not new as it is already applied in several industrial domains for dozens of 
years.  
The second aspect of increasing lifetime is to reuse a system in an application framework less 
demanding in term of performance, power consumption, safety, etc. 
 

5.5.1.1 Key focus areas 
 
For re-using something in an environment for which it was not initially designed, it is key to 
be able to qualify the part in its new environment. To achieve this very challenging goal the 



 

 

main question is “what are the objective parameters to take into account to guarantee that the 
degraded part is compatible with its new working environment?”  

• Intelligent reconfigurable concepts are an essential key technology for increasing the 
re-use and service life of hardware and software components. Such modular solutions 
on system level require the consideration of different quality or development stages 
of sensors, software, or AI solutions. If the resulting uncertainties (measurements, 
predictions, estimates by virtual sensors, etc.) are considered in networked control 
concepts, the interoperability of agents/objects of different generations can be 
designed in an optimal way. 

• Distributed monitoring: continuous monitoring and diagnosis also play a crucial role 
for the optimization of product lifetime. Where a large amount of data is collected 
during daily life operation (e.g. usage, environment, sensor data), big data analysis 
techniques can be used to predictively manipulate the operational strategy, e.g. to 
extend service life. Similarly, an increase in power efficiency can be achieved by 
adjusting the calibration in individual agents. For example, consider a fuel cell electric 
vehicle where the operation strategy decisively determines durability and service life. 
Distributed monitoring collects data from various interconnected agents in real-time 
(e.g. a truck platoon, an aircraft swarm, a smart electricity distribution network, a fleet 
of electric vehicles) and uses these data to draw conclusions about the state of the 
overall system (e.g. the state of health or state of function). On the one hand, this 
allows to detect shifting behaviour or faulty conditions in the systems and to even 
isolate them by attributing causes to changes in individual agents in the network or 
even ageing of individual objects and components. Such detection should be 
accomplished by analysing the continuous data stream that is available in the network 
of agents. A statistical or model-based comparison of the individual objects with each 
other provides additional insights. Thus, for example, early failures of individual 
systems could be predicted in advance. This monitoring should also cover the 
performance of the semiconductor devices themselves, especially to characterize and 
adjust to aging and environmental effects and adjust operations accordingly. 

• Another essential factor for increasing the lifespan of products is the intelligent use 
and handling of real-world data from products that are already in use and from 
previous generations of these. On the one hand, this allows for an optimal adaptation 
of the operating strategy to, for example, regionally, seasonally, or even individually 
varying use patterns. On the other hand, the monitoring of all agents (e.g. fleet of 
vehicles) also enables very precise estimates and predictions of certain conditions. 
This enables the detection of early failures of individual objects but also the timely 
implementation of countermeasures. Such approaches can be referred to as 
distributed monitoring. 

• Distributed predictive optimization is possible, whenever information about future 
events in a complex system is available. Examples are load predictions in networked 
traffic control or demand forecasts smart energy supply networks. In automation, a 
concept dual to control is monitoring and state observation, leading to safety-aware 
and reconfigurable automation systems. Naturally, all these concepts, as they concern 
complex distributed systems must rely on the availability of vast data, which is 
commonly associated with the term big data. Note that in distributed systems the 
information content of big data is mostly processed, condensed, and evaluated locally 
thus relieving both communication and computational infrastructure. 



 

 

 
 

5.5.2 For Embedded Artificial Intelligence 
 
The novelty with AI systems is to upgrade while preserving and guaranteeing the same level 
of safety and performance. For previous systems based on conventional algorithmic ap-
proaches, the behaviour of the system could be evaluated offline in validating the upgrade with 
a predefined data set representative enough of the operating conditions, knowing that more 
than the data themselves, the way they are processed is important. In the case of AI, things are 
completely different, as the way data are processed is not typically immediately understandable 
but what is key are the data set themselves and the results they produce. In these conditions it 
is important to have frameworks where people could reasonably validate their modification, 
whether it is hardware or software, in order to guarantee the adequate level of performance and 
safety, especially for systems which are human life critical. Another upgrade-related challenge 
is that of designing systems with a sufficient degree of architectural heterogeneity to cope with 
the performance demands of AI and machine learning algorithms, but at the same time flexible 
enough to adapt to the fast-moving constraints of AI algorithms. Whereas the design of a new 
Embedded architectures or electronic device, even of moderate complexity, takes typically 1-
3 years, AI models such as Deep Neural Networks are outdated in just months by new networks. 
Often, new AI models employ different algorithmic strategies from older ones, outdating fixed-
function hardware accelerators and necessitating the design of hardware whose functionality 
can be updated.     
 
The other area of lifetime extension is how AI could identify very low signal in a noisy data 
environment. In the case of predictive maintenance for instance it is difficult for complex ma-
chinery to identify early in advance a potential failing part. More complex is the machinery 
and less possible is to have a complete analytic view of the system which would allow simula-
tion and then identify in advance potential problems. Thanks to AI and collecting large dataset 
it is possible to extract some very complex patterns which could allow very early identification 
of parts with potential problem. AI could not only identify these parts but also give some advice 
regarding when an exchange is needed before failure, and then help in maintenance task plan-
ning.  
 
Whatever the solution used to extend lifetime of systems, this cannot be achieved without a 
strong framework regarding standards and, even more important, for AI qualification frame-
work of solutions. AI systems are new and show little standardization currently. Therefore, it 
is of high importance to devote effort to this aspect of AI-hardware and -software develop-
ments. Europe has a very diverse industrial structure, and this is a strength if all those players 
have early access to the standards frameworks for AI and its development vectors. Open access 
is therefore as important for the European AI ecosystem as the ability to upgrade and participate 
in the development of AI-interfaces. Another very important point is how we qualify an AI 
solution. Comparing to computing systems based on algorithm, where it exists a lot of tools 
and environment to detect and certify that a system has a given property thanks to static code 
analysis, formal proof, worst case execution time, … In case of AI, most of these solutions are 
not applicable as the performance of the system depends on the quality of datasets used for 
training and quality of data used during the inference phases. 
 
For this reason, we suggest a strong and dedicated focus on upcoming AI-standards. Neverthe-
less, we need to keep in mind the strong business lever of standard and make sure that European 
companies will be able to build on top of standards and generate value at European level. For 



 

 

instance, android is open source but no way to make a competitive smartphone without a 
Google android license. 
 
Interoperability, modularity, scalability, virtualization, upgradability is well known in embed-
ded systems and are already widely applied. But they are brand new in AI and nearly non-
existent in edge AI. On top, self-x (learning/training, configuration or reconfiguration, adapta-
tion, …) are very promising but still under research or low level of development. Federative 
learning and prediction on the fly will certainly take a large place in the future edge AI systems 
where many similar equipment collect data (Smartphone, electrical vehicles, …) and could be 
improved and refreshed continuously.  
 
One challenge of the AI edge model is upgradability of the firmware updates and the new 
learning/training algorithms for the edge devices. This includes the updates over-the-air and 
the device management of the updating of AI/ML algorithms based on the training and retrain-
ing of the networks (e.g. neural networks, etc.) that for IoT devices at the edge is very much 
distributed and is adapted to the various devices. The challenge of the AI, edge inference model, 
is to gather data for training to refine the inference model as there is no continuous feedback 
loop for providing this data. The related security questions regarding model confidentiality, 
data privacy etc. need to be addressed specifically for such fleets of devices.  
 
At the application level, edge AI has a potential positive impact on ecologic sustainability: 
consider e.g. the application of AI to optimize and reduce the power consumption in manufac-
turing plants, buildings, households, etc. The potential impact is evident but, to ensure a real 
sustainable development and a real benefit, edge AI solutions will have to ensure that the costs 
savings are significantly larger than the costs required to design, implement and train AI. 
 
More generally, the implementation, deployment and management of large-scale solutions 
based on edge AI could be problematic and unsustainable, if proper engineering support, auto-
mation, integration platforms and remote management solutions will not be provided. At this 
level, the problem of sustainability includes business models, organizational aspects, compa-
nies’ strategies, partnerships, and it extends to the entire value chain proposing edge AI-based 
solutions.  
 

5.5.2.1 Key focus areas 
 

• Developing HW/SW architectures and hardware that support software upgradability 
and extension of software useful life. Secure software upgradability is necessary in 
nearly all systems now and hardware should be able to support future updates. AI 
introduces additional constraints compared to previous systems. Multiplicity of AI 
approaches (Machine learning, DL, semantic, symbolic, etc.), multiplicity of neural 
network architectures based on a huge diversity of neuron types (CNN, RNN, etc.), 
potential complete reconfiguration of neural networks for a same system (linked to a 
same use case) with a retraining phase based on an adapted set of data make 
upgradability much more complex. This this why HW/SW, related stacks, tools, data 
sets compatible with the Edge AI system must be developed in synergy. HW/SW 
plasticity is necessary whatever is the AI background principle of each system to make 
them as much as possible upgradable and interoperable and to extend the system 
lifetime. HW virtualization will help to achieve it as well as standardization. The key 
point is that lifespan extensions, like power management, are requirements which 



 

 

must be considered from day one of the design of the system. It is impossible to 
introduce them near the end without a strong rework. 

• Standardization: standards are very difficult to define as they shouldn’t be too 
restrictive to avoid limitation to innovation but not too open also to avoid plenty of 
objects compliant to the standard but not really interoperable because not supporting 
the same options of the same standard. For this reason, the concept of introducing 
standards early in the innovation process, must be complemented with a visionary 
perspective in view to expand the prospective standards for future expansions in 
function, feature, form, and performance.  

• Re-use: One concept called the “2nd life” is actually the re-use parts of systems.   Such 
re-use could be adapted to edge AI as far as some basic rules are followed. First, it is 
possible to extract the edge AI HW/SW module which is performing a set of functions. 
For example, this module performs classification for images, movements detection, 
sounds recognition, etc… Second, the edge AI module can be requalified and 
recertified downgrading its quality level. A module implemented in aeronautic 
systems could be reused in automotive or industrial applications. A module used in 
industrial could be reused in consumer applications. Third, an AI system may be re-
trained to fit the “2nd life” similar use case, going for example from smart 
manufacturing to smart home. Last, business model will be affordable only if such 
“2nd life” use is on a significant volume scale. A specific edge AI embedded module 
integrated in tens of thousands of cars could be removed and transferred in a new 
consumer product being sold on the market.  

• Prediction and improvements: prediction / improvements with pure analytics 
techniques is always difficult. Very often the analytic behaviours of some system parts 
is not known and then either approximate models are build-up or it is just ignored. 
Thanks to AI, the system will be able to evolve based on data collected during its 
running phase. AI techniques will allow better prediction method based on real data 
allowing the creation of aggregated and more pertinent indicators not possible with 
pure analytic approach. 

• Realizing self-X (adaptation, reconfiguration, etc.): for embedded systems self-
adaptation, self-reconfiguration has an enormous potential in many applications. 
Usually in self-reorganizing systems the major issue is how to self-reorganize while 
preserving the key parameters of a system (performance, power consumption, real 
time constraints, etc.). For any system, there is an operating area which is defined in 
the multi-dimensional operating parameter space and coherent with the 
requirements. Of course, very often the real operating conditions are not always 
covering the whole operating domain for which the system was initially designed. 
Thanks to AI, when some malfunctioning parts are identified it could then be possible 
to decide, relying on AI and the data accumulated during system operation, if it affects 
the behaviours of the system regarding its real operating conditions. If it is not the 
case, it could be considered that the system can continue to work, with maybe some 
limitations, but which are not vital regarding normal operation. It would then extend 
its lifetime “in place”. The second case is to better understand the degraded part of a 
system and then its new operating space. This can be used to decide how it could be 
integrated in another application making sure that the new operating space of the 
new part is compatible with the operating requirements of the new hosting system.  



 

 

• Self-learning techniques are promising. Prediction on Natural Language 
Understanding (NLU) on the fly or keyboard typing, predictive maintenance on 
mechanical systems (e.g. motors) are more and more studied. Many domains can 
benefit of the AI in mobility, smart building, communication infrastructure.   

• Dynamic reconfiguration: a critical feature of the AI circuits is to dynamically change 
their functions in real-time to match the computing needs of the software, AI 
algorithms and the data available and create software-defined AI circuits and 
virtualize AI functions on different computing platforms. The use of reconfigurable 
computing technology for IoT devices with AI capabilities allows hardware 
architecture and functions to change with software providing scalability, flexibility, 
high performance, and low power consumption for the hardware. The reconfigurable 
computing architectures, integrated into AI-based circuits can support several AI 
algorithms (e.g. convolutional neural network (CNN), fully connected neural network, 
recursive neural network (RNN), etc.) and increase the accuracy, performance and 
energy efficiency of the algorithms are integrated as part of software define functions. 

• From the engineering perspective, leveraging open source will help developing 
European advanced solutions for edge AI (open-source hardware, software, training 
datasets, open standards, etc.).  

 
As a summary, intelligence at the edge sustainable engineering will have to face many chal-
lenges: 

• Supply chain integrity for development capability, development tools, production, and 
software ecosystems, with support for the entire lifecycle of edge AI based solutions. 

• Security for AI systems by design, oriented also to certify edge AI based solutions. 
European regulations and certification processes would lead to a global compelling 
advantage. 

• Europe needs to establish and maintain a complete R&D ecosystem around AI. 
• Europe need to address the end to end value chain and supports its SMEs. 
• Identification of a roadmap for standardization that does not hinder innovation: the 

right balance that ensure European leadership in edge AI. 
• Europe must strive for driving a leading and vibrant ecosystem for AI, with respect to 

R&D, development and production, security mechanisms, certifications, and 
standards.  

 
5.6 Major Challenge 4: ensuring European sustainability  

5.6.1 For Edge Computing 
 
One of the major challenges that need to be accounted for in the next few years is related to the 
design of progressively more complex electronic systems to support advanced functionalities 
such as AI and cognitive functionality. This is particularly challenging in the European land-
scape, which is dominated by small and medium enterprises (SMEs) with only some large 
actors that can fund and support larger-scale projects. To ensure European competitiveness and 
sustainability in advanced Embedded architectures it is therefore crucial to create an ecosys-
tem, and the means, in which SMEs can cooperate and increase their level of innovation and 
productivity. This ecosystem needs to cover at the best all part of the value chain from concept 
to design till production.  The definition of open industrial standards and a market of Intellec-
tual Properties (IPs) are required to accelerate the design, competitivity and create a larger 



 

 

market.  Open-source on Software, Hardware and tools can play an extremely important role 
in this regard, open-source solutions significantly allow to reduce engineering costs for licens-
ing and verification, lowering the entry barrier to design innovative products. 
  

5.6.1.1 Key focus areas 
 

• Energy efficiency improvement: 
o New materials, new embedded non-volatile memories with high density and 

ultra-low power consumption, substrates and electronic components 
oriented to low and ultra-low power solutions. 

o 3D-based device scaling for low power consumption and high level of 
integration. 

o Strategies for self-powering nodes/systems on the edge. 
o Low and ultra-low power and interoperable communications components 
o Efficient cooling solutions. 

• Improving sustainability edge computing: 
o Efficient and secure code mobility. 
o Open edge computing platforms, providing remote monitoring and control, 

security and privacy protection. 
o Solutions for the inclusion/integration of existing embedded computers on 

the edge. 
o Policies and operational algorithms for power consumption at edge 

computing level. 
o New benchmarking approach considering sustainability. 

• Leveraging open source to help developing European advanced solutions on the edge: 
o Open-source hardware (and its complete ecosystem of Ips and tools). 
o Open-source software. 
o Europe must address the end to end value chain. 

• Engineering support to improve sustainable edge computing: 
o Engineering process automation for full lifecycle support. 
o Edge devices security by design. 
o Engineering support for edge computing, verification and certification, 

addressing end-to-end edge solutions. 
 

5.6.2 For Embedded Artificial Intelligence 
 
First, as Embedded Artificial Intelligence is developing quickly and in many different direc-
tions for new solutions, it is crucial that an European ecosystem emerge gathering all steps of 
the value chain. It has then to include the hardware, the software, the tools chain for AI devel-
opment and the data sets in an trustable and certifiable environment. Both Edge Computing 
and Embedded Artificial Intelligence ecosystems are tied together. 
 
Next, technology is strongly affected by sustainability that, very often, tips the scale between 
the ones that are promising, but not practically usable, and the ones making the difference. e.g. 
cloud computing, based on data centres, plays a fundamental element for the digitalization 
process. However, data centres consume a lot of resources (energy43 , water, etc.) and they are 

 
43 Andrae, Anders. (2017). Total Consumer Power Consumption Forecast 



 

 

responsible for significant carbon emissions, during their entire lifecycle, and generate a lot of 
electronic and chemical waste. 
 
Today, the percentage of worldwide electricity consumed by data centres is estimated to exceed 
the 3%, while the CO2 emissions are estimated to reach the 2% of worldwide emissions44 45, 
with cloud computing that is responsible for half of these emissions. A recent study predicts 
that, without energy efficient solutions, by 2025 eight data centres will consume 20% percent 
of the world’s energy, with a carbon footprint rising to 5.5% of the global emissions. Data 
centres are progressively becoming more efficient, but shifting the computing on the edge, for 
example, allows to temporally reduce data traffic, data centres storage and processing.  How-
ever, only a new computing paradigm could significantly reduce their environmental footprint 
and ensure sustainability. Edge Computing could contribute to reach this goal by the introduc-
tion of ultra-low and efficient computing solutions. 
 
Indeed, from a wider perspective, digital transformation relies largely on other technologies 
that could significantly impact sustainability, including edge and fog computing, AI, IoT hyper 
connectivity, etc. In recent years, artificial intelligence and cloud computing have been the 
focus of the scientific community, environmental entities and public opinion for the increasing 
levels of energy consumption, questioning the sustainability of these technologies and, indi-
rectly, their impact on corporate, vertical applications and societal sustainability. For example, 
devices are already producing enormous amounts of data and a recent study46  estimates that 
by 2025 communications will consume 20% of all the world’s electricity. This situation has 
been worsening with COVID-19 pandemic that generated a worldwide reduction of power con-
sumption as a result of global lockdown restrictions but, at the same time, caused a huge spike 
in Internet usage: NETSCOUT measured an increase of 25-35% of worldwide Internet traffic 
in March 2020, just due to remote work, online learning and entertainment. This spike in In-
ternet use provides a flavour of the implications of digitalization on sustainability. Reducing 
energy of computing and storage devices is a major challenge (see Major Challenge 1 on “In-
creasing the energy efficiency of computing systems”). 
 
Shifting to green energy is certainly a complementary approach to ensure sustainability, but 
the conjunction of AI and edge computing, the Edge AI, has the potential to provide sustainable 
solutions with a wider and more consolidated impact. Indeed, a more effective and longer-term 
approach to sustainable digitalization implies reconsidering the current models adopted for data 
storage, filtering, analysis, processing, and communication. By embracing edge computing, for 
example, it is possible to significantly reduce the amount of useless and wasteful data flowing 
to and from the cloud and data centres, with an architectural and structural more efficient so-
lutions that permanently reduces the overall power consumption and bring other important ben-
efits such as real-time data analysis reducing the amount of data to be stored and then a better 
data protection. The Edge Computing paradigm also makes AI more sustainable: it is evident 
that cloud-based machine learning inference is characterized by a huge network load, with a 
serious impact on power consumption and huge costs for organizations. Transferring machine 
learning inference and data pruning to the edge, for example, could exponentially decrease the 
digitization costs and enable sustainable businesses.  To avoid this type of drawbacks, new AI 
 
44 Koronen, C., Åhman, M. & Nilsson, L.J. Data centres in future European energy systems—energy efficiency, 
integration and policy. Energy Efficiency 13, 129–144 (2020). 
45 https://datacentrereview.com/content-library/490-how-to-reduce-data-centre-energy-waste-without-
sinking-it-into-the-sea 
46 Andrae, A., & Edler, T. (2015). On global electricity usage of communication technology: trends to 2030. 
Challenges, 6, 117–157. 



 

 

components should be developed based on neuromorphic architectures and considering the ap-
plication areas, in some cases, this could bring to a more specialised and very efficient solu-
tions. 
 
Sustainability of Edge Computing and AI is affected by many technological factors, on which 
Europe should invest, and, at the same time, they have a positive impact on the sustainability 
of future digitalization solutions and related applications.  
 
GAMAM already master these technologies and are progressively controlling the complete 
value chain associated with them. To follow this trend and aim at strategic autonomy, Europe 
has therefore to fill the technology gaps and address the value chain end to end, with a particular 
attention to SMEs (which generate a large part of European revenues) and leveraging on the 
cooperation between the European stakeholders in the value chain to develop successful prod-
ucts and solutions. From this perspective, European coordination to develop AI, edge compu-
ting and edge AI technologies is fundamental to create a sustainable value chain based on alli-
ances and capable to support the European key vertical applications. 
 
It will be a challenge for Europe to be in this race, but the emergence of AI at the edge, and its 
know-how in embedded systems, might be winning factors. However, the competition is fierce 
and the big names are in with big budgets and Europe must act quickly, because US and Chi-
nese companies are already also moving in this "intelligence at the edge" direction. 
 

5.6.2.1 Key focus areas 
 
On top of the key focus area for Edge computing, Embedded Artificial Intelligence also re-
quires: 
 

• Energy-efficiency improvement: 
o New memories used to mimic synapses. 
o Advanced Neuromorphic components.   

• Improving sustainability of AI: 
o Re-use and share of knowledge and models generated by embedded intelli-

gence. 
o Energy- and cost-efficient AI training. 
o New benchmarking AI approach considering sustainability. 

• Leveraging open source to help developing European AI advanced solutions on the 
edge: 

o Open-source training datasets. 
o Open Frameworks including AI tools. 
o Europe must address the end-to-end Embedded Intelligence value chain. 

• Engineering support to improve sustainable AI: 
o Edge AI security by design. 
o Engineering support for AI verification and certification. 
o Education and support to deploy Edge AI. 

 
 

 



 

 

6 Timeline 
 
Short term: 2022-2026 - Medium 2027-2031 - Long term: beyond 2031 
Legend:  

• (EC): concern Edge Computing 

• (eAI:) concern Embedded Artificial Intelligence 

 
 

MAJOR CHALLENGE TOPIC SHORT TERM MEDIUM TERM LONG TERM 

 2023-2027 2028-2032 BEYOND 2032 

Major Challenge 1: 
increasing the en-
ergy efficiency of 
computing systems 

Processing data 
where it is created 

(EC and eAI) 

Development of algorithms and 
applications where processing 
is performed. 

Moving processing towards 
edge when it is possible 

 

 

New memory management 

Development of hybrid archi-
tectures, with smooth integra-
tion of various processing para-
digms (classical, neuromorphic, 
deep learning), including new 
OSs supporting multiple com-
puting paradigms 

Advanced memory manage-
ment 

Dynamic instantiation of multi-
paradigm computing resources 
according to the specifications 
of the task to be performed. 
Automatic interfacing, discov-
ery, and configuration of re-
sources 

Development of in-
novative hardware 
architectures 
(EC) 

 Development of  computing 
paradigms (e.g. using physics to 
perform computing). Use of 
other technologies than silicon 
(e.g. photonics) 

Use of 2.5D, interposers and 
chiplets, with efficient intercon-
nection network, e.g. using 
photonics) 

New In-memory computing ac-
celerators 

 

Supporting tools integrating 
multiple computing paradigms. 

Advanced In-memory compu-
ting accelerators 

Integration in the same package 
of multiple computing para-
digms (classical, Deep Learning, 
neuromorphic, photonic, …)  

Complete 2.5D (interposers and 
chiplets) ecosystem, with tools 
increasing productivity and re-
use of chiplets in different de-
signs 

Development of in-
novative hardware 
architectures: e.g. 
neuromorphic 
(eAI) 

Development of neuromorphic 
based chips and support of this 
new computing model.  

New In-memory computing ac-
celerators for AI 

New architecture to support 
new DNN models in the em-
bedded space, such as trans-
formers. 

Development tools allowing to 
prune/quantize big networks in 
order to map them onto em-
bedded devices 

Integration of neuromorphic 
and other computing within 
classical systems 

Supporting tools integrating 
multiple AI computing para-
digms. 

Automatic adaptation of com-
plex networks to embedded 
systems with a minimum loss of 
performances 

Integration in the same package 
of multiple computing para-
digms (classical, Deep Learning, 
neuromorphic, photonic, …)  

Exploring potential use of quan-
tum computing in Artificial In-
telligence? 



 

 

 

Developing distrib-
uted edge compu-
ting systems  
(EC) 

Development of Edge (ex: fog) 
type of computing (peer to 
peer) 

Edge computing demonstrating 
high performance for selected 
applications  

 

Developing distrib-
uted edge AI sys-
tems  
(eAI) 

Development of efficient and 
automated transfer learning: 
only partial relearning required 
to adapt to a new application 
(Ex: Federative learning) 

Support of recent Neural net-
works models such as Trans-
formers,  architectures for state 
of the art Neural Networks al-
gorithms. 

Federated learning or similar 
approach demonstrating high 
performance for selected appli-
cations  
 

 

Interoperability 
(with the same 
class of applica-
tion) and between 
classes 
(EC and eAI) 

Create gateways between vari-
ous solutions, beyond ONNX 
(for eAI) 

Developing open architectures 
(for fast development) with 
maximum reuse of tools and 
frameworks 

Interfaces standards (more 
than solutions) (could help ex-
plainability, with a move from 
black to grey boxes) 

Common interface architecture, 
with dynamic binding: publish-
ing of capabilities for each de-
vice/block, flexible data struc-
ture and data converters, dy-
namic interconnect. 

Promoting European standard 
for interoperability cross appli-
cation silos. 

Interfaces publishing non-func-
tional properties (latency, band-
width, energy, …) 

At all levels (from chips to sys-
tems), automatic interoperabil-
ity, adaptation to the data 
structure and physical inter-
face, considering the communi-
cation characteristics. (Mid-
term? Automatic translator of 
data and data format) 

Global reconfiguration of the 
resources to satisfy the func-
tional and non-functional re-
quirements (latency, energy, 
etc.) 

Scalable and Mod-
ular AI  
(eAI) 

Using the same software devel-
opment infrastructure from 
deep edge to edge and possibly 
HPC applications for AI devel-
opments 

Use of similar building blocks 
from deep edge to edge AI de-
vices 

Scalable architecture (in 3 di-
mensions). Use of interposer 
and chiplets to build chips for 
various applications (for edge 
and for HPC applications) with 
the same AI hardware building 
blocks 

Complete 2.5D (interposers and 
chiplets) ecosystem, with tools 
increasing productivity and re-
use of chiplets in different de-
signs of AI systems 

 

Linear and/or functional scala-
bility of AI systems 

 

Scalable and Mod-
ular systems 
(EC) 

Using the same software devel-
opment infrastructure from 
deep edge to edge and possibly 
HPC applications. 

Use of similar building blocks 
from deep edge to edge de-
vices 

Scalable architecture (in 3 di-
mensions). Use of interposer 
and chiplets to build chips for 
various applications (for edge 
and for HPC applications) with 
the same hardware building 
blocks 

Complete 2.5D (interposers and 

Linear and/or functional scala-
bility 

Digital twin (Functionalities 
simulation) 

 



 

 

 

chiplets) ecosystem, with tools 
increasing productivity and re-
use of chiplets in different de-
signs 

 

Co-design: algo-
rithms, HW, SW 
and topologies 
(EC) 

Quick implementation and opti-
mization of HW for the new 
emerging algorithms 

Tools allowing semi-automatic 
design exploration of the space 
of configurations, including var-
iants of algorithms, computing 
paradigms, hardware perfor-
mances, etc. 

Auto-configuration of a distrib-
uted set of resources to satisfy 
the application requirements 
(functional and non-functional) 

Major Challenge 
2: managing the 
increasing com-
plexity of systems 

Balanced mecha-
nisms between 
performance and 
interoperability 

(EC) 

Exposing the non-functional 
characteristic of de-
vices/blocks and off-line op-
timization when combining 
the devices/blocks 

On-line (dynamic) reconfigu-
ration of the system to fulfil 
the requirements that can 
dynamically change (Self-x) 

 

Drive partitioning through 
standards 

Development of 
trustable AI 
(eAI) 

Move to security Chapter Move to security Chapter Move to security Chapter 

Developing dis-
tributed edge 
computing sys-
tems  
(EC) 

See items above in Increas-
ing the energy efficiency of 
computing systems 

See items above in Increas-
ing the energy efficiency of 
computing systems 

See items above in Increas-
ing the energy efficiency of 
computing systems 

Scalable and 
Modular AI  
(eAI) 

See items above in Increas-
ing the energy efficiency of 
computing systems 

See also items above in In-
creasing the energy effi-
ciency of computing systems  

Data and learning driven cir-
cuits design  

See items above in Increas-
ing the energy efficiency of 
computing systems 

Easy adaptation 
of models 
(eAI) 

Development of efficient 
and automated transfer 
learning: only partial re-
learning required to adapt 
to a new application (Ex: 
Federative learning) 

Create a European training 
reference database for same 
class of applications/use 
cases network learning 

Optimization of the Neural 
Network topology from a 
generically learned net-
works to an application spe-
cific one. 

 

Generic model based digital 
AI development system  



 

 

 
 

Easy adaptation 
of modules 
(EC) 

Easy migration of applica-
tion on different computing 
platforms (different CPU – 
x86, ARM, Risc V- different 
accelerators) 

Use of HW virtualization 

Automatic transcoding of 
application for a particular 
hardware instance (à la Ro-
setta 2) 

Generic model based digital 
development system  

Realizing self-X  
Self-optimize, re-
configuration 
and self-manage-
ment 
(EC) 

Add self-assessment feature 
to edge devices 

Automatic reconfiguration 
of operational resources fol-
lowing the self-assessment 
to fulfil the goal in the most 
efficient way 

Modelling simulation tools 
for scalable digital twins 

Using AI tech-
niques to help in 
complexity man-
agement 
(EC and eAI) 

Using AI techniques for the 
assessment of solutions and 
decrease the design space 
exploration 

Automatic generation of ar-
chitecture according to a 
certain set of requirements 
(in a specific domain) 

Modelling simulation tools 
for scalable digital twins 

Major Challenge 
3: supporting the 

increasing 
lifespan of de-

vices and systems 

HW supporting 
software up-
gradability  

(eAI) 

Create a European training 
reference database for same 
class of applications/use 
cases network learning 

Develop European training 
benchmarks (Methods and 
methodologies) 

Build framework tools for 
HW/SW for fast validation 
and qualification 

Establish interfaces stand-
ards compatible with most 
of AI approaches 

HW virtualization based on 
AI algorithms 

Generic AI functions virtual-
ization 

 

European training standards 
(Compliance/Certification) 

 Certifiable AI (and 
paths towards explana-
bility and interpretabil-
ity)  

Explainable AI 

Realizing self-X  
Also partially in 
Managing the in-
creasing com-
plexity of sys-
tems 
(eAI) 

Unsupervised learning tech-
nics 

Development of efficient 
and automated transfer 
learning: only partial re-
learning required to adapt 
to a new application (Ex: 
Federative learning) 

 

HW virtualization based on 
AI algorithms 

 

Generic AI functions virtual-
ization  

Certifiable AI (and 
paths towards explana-
bility and interpretabil-
ity) 

Explainable AI 



 

 

 
 

Improving in-
teroperability 
(with the same 
class of applica-
tion) and be-
tween classes, 
modularity and 
complementarity 
between genera-
tions of devices. 
(EC)  
Also partially in 
Increasing the 
energy efficiency 
of computing sys-
tems 

Developing open architec-
tures (to quickly develop) 
with maximum reuse of 
tools and frameworks 

Interfaces standards (more 
than solutions) (could help 
explainability move from 
black to grey boxes) 

Generic functions modules 
by class of applications/use 
cases + virtualization 

 

Improving in-
teroperability of 
AI functions 
(with the same 
class of applica-
tion) and be-
tween classes, 
modularity and 
complementarity 
between genera-
tions of devices. 
(eAI) 
Also partially in 
Increasing the 
energy efficiency 
of computing sys-
tems 

Developing open AI archi-
tectures (to fast develop) 
with maximum reuse of 
tools and frameworks 

Interfaces standards (more 
than solutions) (could help 
explainability of AI with a 
move from black to grey 
boxes) 

Clarified requirements for 
embedded AI in industry 

Generic AI functions mod-
ules by class of applica-
tions/use cases + virtualiza-
tion 

 

Developing the 
concept of 
2nd life for com-
ponents 
(EC) 
(link with sustain-
ability) 

Inclusion of existing embed-
ded systems on the edge 
(huge market opportunity)  

 

Generic set of functions for 
multi-applications/use cases 

Library of generic set of 
functions (Standardization) 

Basic data collection for pre-
dictive maintenance 

Global data collections for 
predictive maintenance by 
applications/use cases 

Standardize flow for HW/SW 
qualification of generic set 
of functions (including re-
training) which are used in a 
downgraded application/use 
case 

Major Chal-
lenge 4: 

ensuring 

Energy effi-
ciency impro-
vement 

Materials and electronic 
components oriented to low 
and ultralow power solutions 
Low and ultra-low power 

3D-based device scaling for 
low energy consumption 
 

 



 

 

 

7 Synergy with other themes 
 
The scope of this Chapter is to focus on computing components, and more specifically towards 
Embedded architectures / Edge Computing and Intelligence at the edge. These elements rely 
heavily on Process Technologies, Equipment, Materials and Manufacturing, Embedded Soft-
ware and Beyond, limits on Quality, Reliability, Safety and Cybersecurity, and are composing 

European sus-
tainability in 
Edge compu-
ting and em-
bedded Artifi-
cial Intelligence 

(EC) communications 
Strategies for self-powering 
nodes/systems on the edge 
Efficient cooling solutions 

Improving sus-
tainability of 
Edge compu-
ting  
(EC) 

Inclusion of existing embed-
ded systems on the edge 
(huge market opportunity)  

Efficient and secure code 
mobility 

 

Improving sus-
tainability of 
embedded Arti-
ficial Intelli-
gence 
(eAI) 

Energy and cost-efficient AI 
training 

 

Reuse of knowledge and 
models generated by em-
bedded intelligence 

 

Leveraging 
open source to 
help develop-
ing European 
AI advanced so-
lutions on the 
edge 
(eAI) 

Open-source software 

Open-source training da-
tasets 

Open edge computing plat-
forms 

Open-source hardware  

Engineering 
support to im-
prove sustaina-
ble Edge com-
puting 
(EC) 

Sustainability through engi-
neering process automation 

Continuous engineering 
across the product life cycle 

Holistic development envi-
ronment  

Engineering support for veri-
fication and certification  

 

 

Engineering 
support to im-
prove sustaina-
ble  embedded 
Artificial Intelli-
gence 
(eAI) 

Sustainability through engi-
neering process automation 

Continuous engineering 
across the product life cycle 

Holistic development envi-
ronment  

Engineering support for AI 
verification and certification 

Edge AI security by design 

 

 



 

 

systems (System of Systems) that use Architecture and Design techniques to fulfil the require-
ments of the various application domains. Please refer to all these Chapters in this SRIA for 
more details. 
 
For example, there are close links with the Chapter on Quality, Reliability, Safety and Cyber-
security on the topics of increasing “trustworthiness” of computing systems, including those 
using AI techniques: 

• Making AI systems “accepted” by people, as a certain level of explainability is required 
to build trust with their users. 

• Developing approaches to verify, certify, audit and trace computing systems. 
• Making systems correct by construction, and stable and robust by design. 
• Systems with predictable behaviour, including those using deep learning techniques. 
• Supporting European principles, such as privacy and having “unbiased” databases for 

learning, for example. 
 
Embedded Software is also important, and the link to this is explained in the corresponding 
Chapter. Systems and circuits used for AI are of course developed applying Architecture and 
Design, and tools techniques and manufactured based on technologies developed in Process 
Technologies (e.g. use of non-volatile memories, 3D stacking, etc). Artificial intelligence tech-
niques can be also used to improve efficiency in several application. 


