
 

 

 

 
 
 
 



 

 

1.3.1. Introduction 
 
The Artemis/Advancy report 1 states that "the investments in software technologies should 
be on at least an equal footing with hardware technologies, considering the expected growth 
at the higher level of the value chain (Systems of Systems, applications and solutions)". 
According to the same report, embedded software2 technology and software engineering 
tools are part of the six technology domains for embedded intelligence. Embedded 
intelligence is the ability of a system or component to reflect on its own state (e.g. operational 
performance, usage load, environment), and as such is a necessary step towards the level of 
digitalisation and sustainability that is aimed for. In this context,  embedded intelligence 
supports the green deal initiative, as one of the tools for reaching sustainability. 
Embedded software enables embedded and cyber-physical systems (ECPS) in a way that they 
can play a key role in solutions for digitalisation in almost every application domain (cf. 
Chapters 3.1-3.6). The reason for this Chapter being entitled Embedded Software and 
Beyond is to stress that embedded software is a key component of system’s internal 
intelligence, it enables systems to act on external events, and it enables inter-system 
communication. 
 

 
 
Figure 1 Positioning of the Embedded Software and Beyond Chapter in the ECS-SRIA 

Figure 1 illustrates the role and positioning of the Embedded Software and Beyond Chapter 
in the ECS- SRIA. The Chapter on Components Modules and System Integration is focused on 
functional hardware components and systems that compose the embedded and cyber-
physical systems (CPS), considered in this Chapter. While the System of Systems (SoS) Chapter 
is based on independent, fully functional systems, products and services (which are also 
discussed in this Chapter), they are also the constituents of SoS solutions. The Architecture 
and Design: Methods and Tools Chapter examines engineering processes, methods, and 
tools, while this Chapter focuses more on the engineering aspects of Embedded Software 
 
1 Advancy, 2019:  Embedded Intelligence: Trends and Challenges, A study by Advancy, commissioned by 
ARTEMIS Industry Association. March 2019.  Downloadable from: https://www.inside-
association.eu/publications 
2 As defined in <<>>  https://docs.inside-
association.eu/index.php/apps/richdocuments/index?fileId=9080&dir=%2FECS-
SRIA%2F2023%2F0%20Introduction%20and%20overview%2F001.draft%20version 



 

 

and Beyond. For the discussion of safe, trustworthy, and explainable AI in the context of 
embedded intelligence this Chapter is also linked to the Quality, Reliability, Safety and 
Cybersecurity Chapter <<and to the “EdgeAI” Chapter 2.1 >>. 
 
From a functional perspective, the role of Embedded and Cyber-Physical Systems (ECPS) in 
complex systems is becoming increasingly dominant (e.g. cars, trains, airplanes and health 
equipment) because of the new software-enabled functionalities they provide (including 
aspects as security, privacy and autonomy). In these systems, most of the innovations 
nowadays come from software. ECPS are also required for the interconnection and 
interoperability of systems in SoS (e.g. smart cities, air traffic management). Owing to all these 
factors, ECPS are an irreplaceable part of the strive towards digitalisation of our society. 
At the same time, ECPS need to exhibit required quality properties (e.g. safety, security, 
reliability, dependability, sustainability, and, ultimately, trustworthiness). Furthermore, due 
to their close integration with the physical world, ECPS must take into account the dynamic 
and evolving aspects of their environment to provide deterministic, high-performance, and 
low-power computing, especially when processing intelligent algorithms. Increasingly, 
software applications will run as services on distributed SoS involving heterogeneous devices 
(e.g: servers, edge devices) and networks, with a diversity of resource restrictions. In addition, 
it is required from ECPS that its functionalities and its hardware capabilities evolve and adapt 
during their lifecycle – e.g.  through updates of software or hardware in the field and/or by 
learning.  Building these systems and guaranteeing their previously mentioned quality 
properties, along with supporting their long lifetime and certification, requires innovative 
technologies in the areas of modelling, software engineering, model-based design, 
verification and validation (V&V) technologies, and virtual engineering. These advances need 
to enable engineering of high-quality, certifiable ECPS that can be produced (cost-)effectively 
(cf. Chapter 2.3, Architecture and Design: Methods and Tools). 
 

1.3.2. Scope 
The scope of the challenges existing in embedded software engineering for ECPS includes: 

• Interoperability. 
• Complexity. 
• Software quality (safety, security, performance prediction and run-time 

performance, reliability, dependability, sustainability, and, ultimately, 
trustworthiness). 

• Lifecycle (maintainability, extendibility). 
• Efficiency, effectiveness, and sustainability of software development. 
• Dynamic environment of ECPS and adaptability. 
• Maintenance, integration, rejuvenation and extendibility of legacy software 

solutions. 
 
To enable ECPS functionalities and their required level of interoperability, the engineering 
process will be progressively automated and will need to be integrated in advanced SoS 
engineering covering the whole product during its lifetime. Besides enabling new 
functionalities and their interoperability, it will need to cover non-functional requirements 
(safety, security, run-time performance, reliability, dependability, sustainability, and, 
ultimately, trustworthiness) visible to end users of ECPS, and to also satisfy quality 



 

 

requirements important to engineers of the systems (e.g. evolution, maintenance). This 
requires innovative technologies that can be adapted to the specific requirements of ECPS 
and, subsequently, SoS. 
 
Further complexity will be imposed by the introduction of Artificial Intelligence (AI), machine-
to-machine (M2M) interaction, new business models, and monetisation at the edge. This 
provides opportunities for enhancing new engineering techniques like AI for SW engineering, 
and SW engineering for AI. Future software solutions in ECPS will solely depend on new 
software engineering tools and engineering processes (e.g., quality assurance, Verification 
and Validation (V&V) techniques and methods on all levels of individual IoT and in the SoS 
domain).  
 
Producing industrial software, and embedded software in particular, is not merely a matter 
of writing code: to be of sufficient quality, it also requires a strong scientific foundation to 
assure correct behavior under all circumstances. Modern software used in products such as 
cars, airplanes, robots, banks, healthcare systems, and the public services comprises millions 
of lines of code. To produce this type of software, many challenges have to be overcome. 
Even though software in ECPS impacts everyone everywhere, the effort required to make it 
reliable, maintainable and usable for longer periods is routinely underestimated. As a result, 
every day there are news articles about expensive software bugs and over budget or failed 
software development projects. Currently, there is no clearly reproducible way to develop 
such software solutions and simultaneously manage their complexity. Also, there exist big 
challenges with correctness and quality properties of software, as human wellbeing, 
economic prosperity, and the environment depend on it. There is a need to guarantee that 
software is maintainable and usable for decades to come, and there is a need to construct it 
efficiently, effectively and sustainably. Difficulties further increase when legacy systems are 
considered: information and communications technology (ICT) systems contain crucial legacy 
components at least 30 years old, which makes maintenance difficult, expensive, and 
sometimes even impossible. 
 
The scope of this Chapter is research that facilitates engineering of ECPS, enabling 
digitalisation through the feasible and economically accountable building of SoS with 
necessary quality. It considers: 

• challenges that arise as new applications of ECPS emerge. 
• continuous integration, delivery and deployment of products and processes. 
• engineering and management of ECPS during their entire lifecycle, including 

sustainability requirements.. 
 



 

 

 
Figure 2 Importance of Embedded Software for Cyber physical systems and its roles. 

 

1.3.3. TECHNOLOGY-ENABLED SOCIETAL BENEFITS 
 
Computing systems are increasingly pervasive and embedded in almost all objects we use in 
our daily lives. These systems are often connected to (inter)networks, making them part of 
SoS. ECPS bring intelligence everywhere, allowing data processing and intelligence on the 
site/edge, improving security and privacy and, through digitalisation, completely changing the 
way we manage business and everyday activities in almost every application domain (cf. 
Chapters 3.1-3.6). ECPS also play a critical role in modern digitalisation solutions, quickly 
becoming nodes in distributed infrastructures supporting SoS for monitoring, controlling and 
orchestrating of supply chains, manufacturing lines, organisation’s internal processes, 
marketing and sales, consumer products. 
 
Considering their role in digitalisation solutions, ECPS represent a key technology to ensure 
the continuity of any kind of digital industrial and societal activity, especially during crises, 
and have an indirect but significant impact on the resilience of economic systems. Without 
ECPS, data would not be collected, processed, shared, secured/protected, transmitted for 
further analysis. Embedded software allows for the practical implementation of a large set of 
such activities, providing the features required by the applications covered in this SRIA, where 
it becomes a technology enabler. The efficiency and flexibility of embedded software, in 
conjunction with the hardware capabilities of the ECPS, allows for embedded intelligence on 
the edge (edge AI), opening unprecedented opportunities for many applications that 
currently rely on the human acting involvement (e.g. automated driving, security and 
surveillance, process monitoring). Moreover, digitalisation platforms exploit embedded 
software flexibility and ECPS features to automate their remote management and control 
through continuous engineering across their entire lifecycle (e.g. provisioning, bugs 



 

 

identification, firmware and software updates, configuration management). It is the 
requirement of embedded software to improve sustainability of these platforms. 
 

1.3.3.1. OPEN SOURCE SOFTWARE AND LICENSES 
 
Free software (FS) is defined by 4 freedoms: the freedom to run as you wish, to study and 
change the source code, to redistribute copies and to distribute copies of your modified 
versions3. Open source doesn't just mean access to the source code. The Open Source 
Initiative (OSI) details the distribution terms of open-source software must to comply with the 
following criteria 10 criteria4. Today more than 100 open sources licenses5 are compliant with 
these criteria knowing OSI recommends 10 of them because they are popular, widely used, 
or have strong communities6: Apache 2.0, BSD-2 & 3, GPL, LGPL, MIT, Mozilla 2.0, CDDL and 
EPL 2.0. 
Because Open Source components are usually the core building blocks of application software 
in most innovative domains7, providing developers with an ever-growing selection of off-the-
shelf possibilities that they can use for assembling their products faster and more efficiently, 
it is essential to understand the benefits and the constrains that come with open source 
licenses.  
The following license spectrum diagram can summarize the freedom from a user point view: 

 
Figure 3: Open License Spectrum 

A "strong copyleft” license requires that other code that is used for adding, enhancing, and/or 
modifying the original work also must inherit all the original work's license requirements such 
as to make the code publicly available. The most notably strong copyleft licenses are GPL,  and 
AGPL. A Weak copyleft license only requires that the source code of the original or modified 
work is made publicly available, other code that is used together with the work does not 
necessarily inherit the original work's license requirements. The most known and used 
copyleft licenses are LGPL and EPL 2.0.  A permissive license, instead of copyleft protections, 
carries only minimal restrictions on how the software can be used, modified, and 

 
3 https://en.wikipedia.org/wiki/The_Free_Software_Definition 
4 https://opensource.org/docs/definition.php 
5 https://opensource.org/licenses/alphabetical 
6 https://opensource.org/licenses 
7 More than 81% of produced software are consuming open source code in products or services 
(https://github.com/todogroup/osposurvey/tree/main/2020) 
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redistributed, usually including a warranty disclaimer. Apache 2.0, BSD and MIT are the most 
known and used permissive licenses. 
<< where is OpenSource advised? Where is closed source/closed IP advised? --> Philippe >> 
 
Throughout the years, the Open Source Software (OSS) development model has gained more 
and more popularity around the globe. Nowadays, Open Source components are the core 
building blocks of application software in most innovative domains, providing developers with 
an ever-growing selection of off-the-shelf possibilities that they can use for assembling their 
products faster and more efficiently. 
Open Source allows to use (freely), study (in complete transparency), improve and share 
(collaboratively) developed code. To achieve this, Open Source licenses exist that are 
compliant with the OS definition, which allow the software to be freely used, modified and 
shared.  
 
 

2.3.3.1. Application breakthroughs 
 
Embedded software significantly improves the functionalities, features, and capabilities of 
ECPS, increasing their autonomy and efficiency, and exploiting their resources and 
computational power, as well as bringing to the field functionalities that used to be reserved 
only for data centres, or more powerful and resource-rich computing systems. Moreover, 
implementing specific functionalities in software allows for their re-use in different 
embedded applications due to software portability across different hardware platforms. 
Example of increasing computational power of ECPS are video conferencing solutions: less 
than 20 years ago specialised hardware was still required to realise this function, with big 
screens in a dedicated set-up that could not be used for any other but a dedicated application. 
Today, video conferencing is available on every laptop and mobile phone, where the main 
functionality is implemented by software running on standard hardware. The evolution is 
pushing to the “edge” specific video conferencing functionalities, adopting dedicated and 
miniaturised hardware supported by embedded software (video, microphone, and speakers), 
thus allowing the ECS value chain to acquire a new business opportunity.  
 
Following a similar approach, it has been possible to extend the functionalities of mobile 
phones and smart watches, which today can a.o. count steps, keep track of walked routes, 
monitor health, inform users about nearby restaurants, all based on a few extra hardware 
sensors and a myriad of embedded software applications. The trend is to replace specialised 
hardware application with software running on generic computing hardware and supported 
by application-specific hardware, such as AI accelerators, neural chips. This trend is also 
contributing to the differentiation of the value creation downstream and upstream, as 
observed in the Advancy report 8(see Figure 4). 
 
These innovations require the following breakthroughs in the field of embedded software: 

• Increased engineering efficiency and an effective product innovation process (cf. 
Chapter 2.3 Architecture and Design: Methods and Tools). 

 
8 Advancy, 2019:  Embedded Intelligence: Trends and Challenges, A study by Advancy, commissioned by 
ARTEMIS Industry Association. March 2019.  Downloadable from: https://www.inside-
association.eu/publications 



 

 

• Enabled adaptable systems by adaptable embedded software and machine 
reasoning 

• Improved system integration and verification and validation. 
• Embedded software, and embedded data analytics and AI, to enable system health 

monitoring, diagnostics, preventive maintenance, and sustainability. 
• Data privacy and data integrity. 
• Model-based embedded software engineering and design as the basis for managing 

complexity in SoS (for the latter, cf. Chapter 2.3 Architecture and Design: Methods 
and Tools). 

• Improved multidisciplinary embedded software engineering and software 
architecting/design for (systems) qualities, including reliability, trust, safety, security, 
overall system performance, installable, diagnosable, sustainability, re-use (for the 
latter, cf. Chapter 2.3 Architecture and Design: Methods and Tools and Chapter 2.4 
Quality, reliability, safety and cybersecurity). 

• Upgradability, dealing with variability, extending lifecycle and sustainable operation 
 

 
Figure 4 Advancy (2019) 9report: value creation 

 

1.3.4. STRATEGIC ADVANTAGE FOR THE EU 
 
The ambition of growing competences by researching pervasive embedded software in 
almost all devices and equipment is to strengthen the digitalisation advance in the EU and the 
 
9 Advancy, 2019:  Embedded Intelligence: Trends and Challenges, A study by Advancy, commissioned by 
ARTEMIS Industry Association. March 2019.  Downloadable from: https://www.inside-
association.eu/publications 



 

 

European position in embedded intelligence and ECPS, ensuring the achievement of world-
class leadership in this area through the creation of an ecosystem that supports innovation, 
stimulates the implementation of the latest achievements of cyber-physical and embedded 
systems on a European scale, and avoids the fragmentation of investments in research and 
development and innovation (R&D&I). 
 
European industry that is focused on ECS applications spends about 20% of its R&D efforts in 
the domain of embedded digital technologies, resulting in a cumulative total R&D&I 
investment of €150 billion for the period 2013–20. The trend in product and solutions 
perspective estimates a growth from €500 billion to €3.100–11.100 billionError! Bookmark 
not defined., which will be greatly determined by embedded software (30%). 
 
About 60% of all product features will depend on embedded digital technologies, with an 
estimated impact on the European employment of about 800,000 jobs in the application 
industries directly resulting from its development. 
 
The current employment levels in the embedded intelligence market in Europe is estimated 
to be 9.1 million, of which 1.1 million are jobs in the embedded software area, with €15 billion 
being expected to be allocated to collaborative European R&D&I projects in embedded 
software and beyond technologies. 
 

1.3.5. MAJOR CHALLENGES 
 
Research and innovation in the domain of embedded software and beyond will have to face 
six challenges, each generated by the necessity for engineering automation across the entire 
lifecycle of sustainability, embedded intelligence and trust in embedded software. 
 

• Major Challenge 1: efficient engineering of embedded software. 
• Major Challenge 2: continuous integration and deployment. 
• Major Challenge 3: lifecycle management. 
• Major Challenge 4: embedding data analytics and artificial intelligence. 
• Major Challenge 5: support for Sustainability by embedded software. 
• Major Challenge 6: software reliability and trust. 

 



 

 

 
Figure 5 Global and European value chain 2016–25 (Source: Embedded Intelligence: Trends and Challenges, A Study by 
Advancy10, Commissioned by ARTEMIS Industry Association, March 2019). 

1.3.5.1. Major Challenge 1: efficient engineering of embedded software 
 

1.3.5.1.1. State of the art 
 
Embedded software engineering is frequently more a craft than an engineering discipline, 
which results in inefficient ways of developing embedded software. This is visible, for 
instance, in the time required for the integration, verification, validation and releasing of 
embedded software, which is estimated to exceed 50% of the total R&D&I expensesError! 
Bookmark not defined..  
 
A new set of challenges to engineering embedded software is introduced with the emergence 
of heterogeneous computing architectures into the mainstream. It will be common for 
embedded systems to combine several types of accelerators to meet power consumption, 
performance requirements, safety, and real-time requirements. Development, optimisation, 
and deployment of software for these computing architectures proves to be challenge. If no 

 
10 Advancy, 2019:  Embedded Intelligence: Trends and Challenges, A study by Advancy, commissioned by 
ARTEMIS Industry Association. March 2019.  Downloadable from: https://www.inside-
association.eu/publications 



 

 

solutions that automatically tailor software to specific accelerators 11 12 are introduced, then 
developers will be overwhelmed with such effort.  
 
 
 
Software engineering is exceeding the human scale, meaning it can no longer be overseen by 
a human without supporting tools, in terms of velocity of evolution, and the volume of 
software to be designed, developed and maintained, as well as its variety and uncertainty of 
conrtext. Engineers require methods and tools to work smarter, not harder, and need 
engineering process automation and tools and methods for continuous lifecycle support. To 
achieve these objectives, we need to address the following practical research challenges: 
shorter development feedback loops; improved tool-supported software development; 
empirical and automated software engineering; and safe, secure and dependable software 
platform ecosystems. 
 

1.3.5.1.2. Vision and expected outcome 
 
The demand of embedded software is higher than we can humanly address and deliver, 
exceeding human scale in terms of evolution speed, volume and variety, as well as in 
managing complexity. The field of embedded software engineering needs to mature and 
evolve to address these challenges and satisfy market requirements. In this regard, the 
following four key aspects must be considered. 
 

(A) From embedded software engineering to cyber physical systems engineering 
Developing any high-tech system is, by its very nature, a multi-disciplinary project. There is a 
whole ecosystem of models (e.g. physical, mechanical, structural, (embedded) software and 
behavioural) describing various aspects of a system. While many innovations have been 
achieved in each of the disciplines separately, the entirety still works in silos, each with their 
own models and tools, and only interfacing at the borders between them. This traditional 
separation between the hardware and software worlds, and individual disciplines, is 
hampering the development of new products and services. 
 
Instead of focusing just on the efficiency of embedded software engineering, we already see 
that the field is evolving into direction of cyber physical systems (cf. Chapter 2.3 Architecture 
and Design: Methods and Tools), and software is one element of engineering. Rather than 
silos and handovers at the discipline’s borders, we expect tools to support the integration of 
different engineering artefacts and enable, by default, effective development with quality 
requirements in mind – such as safety, security, reliability, dependability, sustainability, 
trustworthiness, and interoperability. New methods and tools will need to be developed to 
further facilitate software interaction with other elements in a system engineering context 
(cf. Chapter 2.3 Architecture and Design: Methods and Tools). 
 
Artificial intelligence is a technology that holds a great potential in dealing with large amount 
of data, and potentially could be used for understanding complex systems. In this context, 
 
11 https://www.intel.com/content/www/us/en/developer/articles/technical/efficient-heterogenous-parallel-
programming-openmp.html#gs.85zv3a 
12 https://www.khronos.org/sycl/ 



 

 

artificial intelligence could hold potential to automate some daily engineering tasks, moving 
boundaries of type and size of tasks that are humanly possible in software engineering. 
 

 
Figure 6 Direct job creation – Europe (2012, m jobs) Source: EU, IDC, Destatis, Roland Berger 

(B) Software architectures for optimal edge computing 
At the moment, Edge computing lacks proper definition and, including many different types 
of managed and unmanaged devices, this leads to uncertainty and difficulties on how to 
efficiently and effectively use software architectures, including aspects as resource, device, 
and network management (between edge devices as well between edge and fog/cloud), 
security, useful abstractions, privacy, security, reliability, and scalability. Additionally, 
automatic reconfiguration, adaptation and re-use face a number of challenges. These 
challenges are caused by diversity of edge devices and wide range of requirements in terms 
of Quality of Service (e.g., low latency, high throughput). Finally, sustainability and reliability 
are difficult to be ensured when trying to prioritize between  Quality of Service on the edge 
and end-to-end system Quality of Service. 
Furthermore, the lack of definition also hampers the growing need for energy efficient 
computing and the development of energy consumption solutions and models across all 
layers from materials, via software architecture to embedded/application software. Energy 
efficiency is vital for optimal edge computing. 
Lastly, as AI is also moving towards edge (i.e., Edge AI) defining lightweight models and model 
architectures that can deal with low amount of data available on the edge and still provide 
good model accuracy are desperately needed. Finally, this limits transfer of common solution 
patterns, best practices, and reference architectures, as Edge computing scope and 
configuration requires further clarification and classification. 
Since edge devices need to be self-contained, edge software architectures need to support, 
from one side, virtual machine-like architectures, and from the other side they need to 
support the entire software lifecycle. The fact that there are many different types of edge 



 

 

devices would also require an interoperability standard to ensure that they can work 
together. Innovations in this field should focus on, amongst others, software hardware co-
design, virtualisation and container technologies and new standard edge software 
architecture (middleware). 
It is essential to discuss types of quality properties that become more significant as Edge 
computing is introduced, and based on these, build use cases that profit from quality 
properties specific to edge computing. There is a need for new approaches that enable early 
virtual prototyping of edge solutions, as well as approaches that enable verification and 
validation of quality properties during entire life cycle of edge software systems. One of the 
possibilities for profiting from Edge is to focus on digital twins to monitor divergences from 
expected behaviour and implement logic that will benefit from Edge’s low latency when 
making critical decisions, especially in safety critical software systems. 
 

(C) Integration of embedded software 
To ensure software development is more effective and efficient, it is necessary to place 
greater focus on integrating embedded software into a fully functional system. First, 
innovation in continuous system integration must include more effective ways of integrating 
legacy components into new systems (see also D). Second, for the integration of data and 
software, the embedded software running in the field has to generate data (such as on run-
time performance monitoring, system health, quality of output, compliance to regulations, 
user interactions) that can be re-used to improve its quality and performance. By improving 
this, the data and software integration can not only improve the efficiency of embedded 
software itself, but also the internal coordination and orchestration between components of 
the system by ensuring a rapid feedback cycle. Third, it is a paramount to enable closer 
integration of software with the available computing accelerators. This must be done in a way 
that frees developers from additional effort, while at the same time uses the full potential of 
heterogeneous computing hardware. 
 

(D) Using abstraction and virtualisation 
The recent focus on model-driven software development (or “low code”) has sparked a new 
approach to managing complexity and engineering software. Generating embedded software 
from higher-level models can improve maintainability and decrease programming errors, 
while also improving development speed. However, creating and managing models of real 
systems with an appropriate level of detail that allows for simulation and code generation is 
a challenge. Managing models and model variability is a necessity if we want to prevent 
shifting the code legacy problem to a model legacy problem where there are too many models 
with too much variety. 
 
The core elements of the domain are captured in a language of the domain. The introduction 
of domain-specific languages (DSLs) and aspect-oriented languages has allowed for the 
inclusion of aspects and constructs of a target application domain into the languages used to 
develop embedded software. This abstraction allows for shortening the gap between 
software engineers and domain experts. We expect innovations in DSLs and tools support to 
establish a major boost in the efficiency of embedded software development. 
 
The increased level of abstraction allows for more innovation in virtualisation of systems and 
is a step towards correctness by construction instead of correctness by validation/testing. 



 

 

Model-based engineering and digital twins of systems are already being used for a variety of 
goals – such as training, virtual prototyping and log-based fault analysis. Furthermore, they 
are necessary for supporting transition towards sustainable ECPS. Innovations in virtualisation 
will allow DSLs to be (semi-)automatically used to generate digital twins with greater precision 
and more analysis capabilities, which can help us to explore different hardware and software 
options before a machine is even built, shortening development feedback loops due to such 
improved tool-supported software development. 
 

(E) Resolving legacy 
Legacy software and systems still constitute most of the software running in the world today. 
It is only natural that the number of legacy increases in future. While it is paramount to 
develop new and improved techniques for the development and maintenance of embedded 
software, we cannot ignore the systems currently in operation. New software developed with 
novel paradigms and new tools will not run in isolation, but rather have to be used 
increasingly in ecosystems of connected hardware and software, including legacy systems. 
 
There are two main areas for innovation here. First, we need to develop efficient ways of 
improving interoperability between new and old. With investments of years of development, 
embedded knowledge and a need to continue operations, we will have to depend on legacy 
software for the foreseeable future. It is therefore imperative to develop new approaches to 
facilitating reliable and safe interactions, including wrapping old code in re-usable containers. 
Second, we must innovate how to (incrementally) migrate, rejuvenate, redevelop and 
redeploy legacy software, both in isolation and as part of a larger system. We expect 
innovations in these areas to increase efficiency and effectiveness in working with legacy 
software in embedded software engineering. 
 

1.3.5.1.3. Key focus areas 
The key focus areas in the domain of efficient embedded software engineering include the 
following: 
There is a strong relation between major challenges  1, 2, 3, and 6 below, and chapter 2.3 
"Architectures and Design: Methods and Tools“ major challenges 1 and 2  -> link  
 
 

• Model-based software engineering: 
o Model-based software engineering enabling systems to become part of SoS. 
o Model inference to enable re-use, refactoring and evolution of existing 

subsystems in SoS. 
o Model-based testing that takes the re-use of uncontrolled systems into 

account. 
o Embedded software architectures to enable SoS <<link to ch. 1,4>>. 

 
• Digital twinning: 

o Virtualisation as means for dealing with legacy systems. 
o Virtualisation and virtual integration testing (using Digital Twins and 

specialized design methods, like e.g.., contract based design, for guaranteeing 
safe and secure updates (cf. Architecture and Design: Methods and Tools 
Chapter 2.4). 



 

 

o Approaches to reduce re-release/re-certification time, e.g. model based 
design, contract based design, modular architectures. 

o Distinct core system versus applications and services. 
o Design for X (e.g design for test, evolvability and updateability, diagnostics, 

adaptability). 
 
 

• Constraint environments: 
o Knowledge-based leadership in design and engineering. 
o Resource planning and scheduling (including multi-criticality, heterogeneous 

platforms, multicore, software portability). 
o Simulation and Design for software evolution over time, while catering for 

distinct phases. 
o Exploiting hybrid compute platforms, including efficient software portability. 

 
• Software technology: 

o Virtualisation as tool for efficient engineering. 
o Interface management enabling systems to become part of SoS. 
o Technology for safe and dependable software ecosystems. 
o Artificial intelligence-based tools to support software engineering efforts. 
o co-simulation platforms 

 
 

• SW engineering tools: 
o   
o integrating embedded AI in software architecture and design. 
o Programming languages for developing large-scale applications for 

embedded systems. 
o Models & digital twins, also at run-time for maintenance and sustainability. 
o Compilers, code generators, and frameworks for optimal use of 

heterogeneous computing platforms. 
o co-simulation platforms 
o Tools, middleware and (open) hardware <link to the RISC-V appendix>> with 

permissible open source licenses …. --> Philippe please 
 

 
2.3.5.1. Major Challenge 2: continuous integration and delivery 

 
2.3.5.1.1. State of the art 

It is fair to assume that most future software applications will be developed to function as a 
part of a certain platform, and not as standalone components. In some embedded system 
domains, this idea has been a reality for a decade (e.g., in the AUTomotive Open System 
Architecture (AUTOSAR) partnership, which was formed in 2003). Increasingly the platforms 
have to support SoS and IoT integration and orchestration, involving a large amount of diverse 
small devices. Guaranteeing quality properties of software (e.g., safety and security) is a 
challenging task, and one that only becomes more complex as the size and distribution of 
software applications grow, especially if software is not properly designed for its intended 



 

 

operational context (cf. Chapter 2.3 Architecture and Design: Methods and Tools). Although 
we are aiming towards continuous integration on the level of IoT and SoS, we are still 
struggling with the integration of code changes from multiple contributors into a single 
software system. 
 
One aspect of the problem relates to the design of SoS13, which are assumed to be composed 
of independent subsystems but over time have become dependent. Orchestration between 
the different subsystems, that may involve IoT as well, is an additional issue here. Another 
aspect relates to the certification of such systems that requires a set of standards. This applies 
especially for IoT and SoS and it is complicated by the introduction of   AI into software 
systems. Although AI is a software-enabled technology, there are still many issues on the 
system level when it comes to its integration into software systems. It is particularly 
challenging to ensure their functional safety and security, and thus to certify such systems. 
Some of the existing initiatives that are moving towards certification include SAE J3016, which 
recommends a taxonomy and definitions for terms related to automated driving. Note, that 
AI may be applied as an engineering tool to simplify certification. 
 
Finally, integration and delivery practices are part of the engineering processes. Although 
methodologies already exist to achieve this (such as DevSecOps and ChatOps), these mostly 
relate to software production. With ECPS, continuous integration becomes increasingly more 
complex, since the products into which the new software modules have to be integrated into 
are already sold and ‘working in the field’, often in many different variants (i.e. the whole car 
fleet of an OEM). Even in domains where the number of variant systems is small, retaining a 
copy of each system sold at the producing company in order to have an integration target is 
prohibitive. Thus, virtual integration using model-based design methods (including closed-box 
models for legacy components) and digital twins used as integration targets as well as for 
verification & validation by physically accurate simulation are a mandatory asset for any 
system company to manage the complexity of ECPS and their quality properties. System 
engineering employing model-based design and digital twins must become a regular new 
engineering activity. 
 

2.3.5.1.2. Vision and expected outcome 
Europe is facing a great challenge with the lack of platforms that are able to adopt embedded 
applications developed by individual providers into an ecosystem (cf. Reference Architectures 
and Platforms in Chapter 2.3). The main challenges here are to ensure the adequate 
functionality of integrated systems (which is partially solved by the microservices approach), 
while ensuring key quality properties such as performance, safety, and security (see also 
Major Challenge 6) (which is becoming increasingly complex and neglected as we adopt 
approaches that facilitate only integration on the functional level). Instrumental for these 
challenges is the use of integration and orchestration platforms that standardise many of the 
concerns of the different parts in the SoS, some of which are connected via IoT. In addition, 
Automated engineering processes will be crucial to ease the integration of parts. 
ECPS will become a part of an SoS and eventually SoECPS. SoS challenges like interoperability, 
composability, evolvability, control, management and engineering demand ECPS to be 
 
13 R. Kazman, K. Schmid, C. B. Nielsen and J. Klein, "Understanding patterns for system of systems integration," 
2013 8th International Conference on System of Systems Engineering, 2013, pp. 141-146, doi: 
10.1109/SYSoSE.2013.6575257. 



 

 

prepared for a life as a part of a SoS (cf. Chapter 1.4 System of systems). Thus precautions at 
individual ECPS's are necessary to enable cost efficient and trustworthy integration into SoS.  
Therefore, it is essential to tackle these challenges by good engineering practices: (i) providing 
sets of recommended code and (system to system) interaction patterns; (ii) avoiding anti-
patterns; and (iii) ensuring there is a methodology to support the integration from which the 
engineers of such systems can benefit. This implies aiming to resolve and pre-empt as many 
as possible of the integration and orchestration challenges on the platforms design level. It 
also involves distribution of concerns to the sub systems in the SoS or IoT. Followed by 
automated engineering processes applying the patterns and dealing with the concerns in 
standardised ways. Besides this, it is necessary to facilitate communication between different 
stakeholders to emphasise the need for quality properties of ECPS, and to enable (automated) 
mechanisms that raise concerns sufficiently early to be prevented while minimising potential 
losses. 
 
On the development level, it is key to enhance the existing software systems development 
methodologies to support automatic engineering, also to automate the V&V processes for 
new features as they are being introduced into the system. This might need the use of AI in 
the V&V process. At this level, it is also necessary to use of software system architecture in 
the automation of V&V and other engineering practices, to manage the complexity that arises 
from such integration efforts (also see Major Challenge 3 below). 
 

2.3.5.1.3. Key focus areas 
The key focus areas identified for this challenge include the following: 
 

• Continuous integration of embedded software: 
o Model based design and digital twins to support system integration (HW/SW) 

and HW/SW co-development (increasingly new technologies have to be 
integrated). 

o Applying automation of engineering, taking architecture, platforms and 
models into account. 

o Virtualisation and simulation as tools for managing efficient integration and 
validation of configurations, especially for shared resources and other 
dependability issues. 

o Application of integration and orchestration practices to ensure standard 
solutions to common integration problems 

o Integration and orchestration platforms and separation of concerns in SoS 
and IoT. 

 
 

• Verification and validation of embedded software: 
o (Model) test automation to ensure efficient and continuous integration of 

CPSs. 
o Enabling secure and safe updates (cf. Major Challenge 3) and extending 

useful life (DevOps). 
o Continuous integration, verification and validation (with and without AI) 

enabling continuous certification with automated verification & validation 



 

 

(especially the focus on dependability), using model-based design 
technologies and digital twins; also when SoS and IoT are involved. 

o Certification of safety-critical software in CPSs. 
 

 
 

3.3.5.1. Major Challenge 3: lifecycle management  
 

3.3.5.1.1. State of the art 
Complex systems such as airplanes, cars and medical equipment are expected to have a long 
lifetime, often up to 30 years. The cost of keeping these embedded systems up to date, 
making them relevant for the everyday challenges of their environment is often time-
consuming and costly. This is becoming more complex due to most of these systems becoming 
cyber-physical systems, meaning that they link the physical world with the digital world, and 
are often interconnected with each other or to the internet. With more and more 
functionalities being realized by embedded software, over-the-air updates – i.e. deploying 
new, improved versions of software-modules unto systems in the field – become an 
increasingly relevant topic. Apart from updates needed for error and fault corrections, 
performance increases and even the implementation of additional functionalities – both 
optional or variant functionalities that can be sold as part of end-user adaptation as well as 
completely new functionalities that are needed to respond to newly emerging environmental 
constraints (e.g. new regulations, new features of cooperating systems). Such update 
capabilities perfectly fit and even are required for the ‘continuous development and 
integration’ paradigm. 
 
Embedded software also has to be maintained and adapted over time, to fit new product 
variants or even new product generations and enable updateability of legacy systems.  If this 
is not effectively achieved, the software becomes overly complex, with prohibitively 
expensive maintenance and evolution, until systems powered by such software are no longer 
sustainable. We must break this vicious cycle and find new ways to create software that is 
long-lasting and which can be cost-efficiently evolved and migrated to use new technologies. 
Practical challenges that require significant research in software sustainability include: (i) 
organisations losing control over software; (ii) difficulty in coping with modern software’s 
continuous and unpredictable changes; (iii) dependency of software sustainability on factors 
that are not purely technical; (iv) enabling “write code once and run it anywhere” paradigm. 
 

3.3.5.1.2. Vision and expected outcome 
As software complexity increases, it becomes more difficult for organisations to understand 
which parts of their software are worth maintaining and which need to be redeveloped from 
scratch. Therefore, we need methods to reduce the complexity of the software that is worth 
maintaining, and extracting domain knowledge from existing systems as part of the 
redevelopment effort. This also relates to our inability to monitor and predict when software 
quality is degrading, and to accurately estimate the costs of repairing it. Consequently, 
sustainability of the software is often an afterthought. This needs to be flipped around – i.e. 
we need to design “future-proof” software that can be changed efficiently and effectively, or 
at least platforms for running software need to either enable this or force such way of 
thinking. 



 

 

As (embedded) software systems evolve towards distributed computing, SoS and 
microservice-based architectural paradigms, it becomes even more important to tackle the 
challenges of integration at the higher abstraction levels and in a systematic way. Especially 
when SoS or IoT is involved, it is important to be able to separate the concerns over the 
subsystems. 
The ability of updating systems in the field in a way that safety of the updated systems as well 
as security of the deployment process is maintained will be instrumental for market success 
of future ECPS. Edge-to-cloud continuum represents an opportunity to create software 
engineering approaches and engineer platforms that together enable deployment and 
execution of the same code anywhere on this computing continuum. 
The ability of keeping track of system parameters like interface contracts and composability 
requires a framework to manage these parameters over the lifetime. This will enable the 
owner of the system to identify at any time how the system is composed and with what 
functionality. 
Instead of focusing just on the efficiency of embedded software engineering, we already see 
that the field is evolving into direction of cyber physical systems (cf. Chapter 2.3 Architecture 
and Design: Methods and Tools), and software is one element of engineering. 
 
Many software maintenance problems are not actually technical but people problems. There 
are several socio-technical aspects that can help, or hinder, software change. We need to be 
able to organise the development teams (e.g. groups, open source communities) in such a 
way that it embraces change and facilitates maintenance and evolution, not only immediately 
after the deployment of the software but for any moment in software lifecycle, for the 
decades that follow, to ensure continuity. We need platforms that are able to run code 
created for different deployment infrastructure, without manual configuration. 
 
The expected outcome is that we are able to keep embedded systems relevant and 
sustainable across their complete lifecycle, and to maintain, update and upgrade embedded 
systems in a safe and secure, yet cost-effective way. 
 

3.3.5.1.3. Key focus areas 
The key focus areas identified for this challenge include the following. 
 

• Rejuvenation of systems: 
o Software legacy and software rejuvenation to remove technical debt (e.g. 

software understanding and conformance checking, automatic redesign and 
transformation). 

o Continuous platform-agnostic integration, deployment and migration. 
o End-of-life and evolving off-the-shelve/open source (hardware/software). 

 
 

• Managing complexity over time: 
o Interplay between legacy software and new development approaches. 
o Vulnerability of connected systems. 
o Continuous certification of updates in the field (reduce throughput time). 
o Intelligent Diagnostics of systems in the field (e.g. guided root cause analysis) 

 



 

 

• Managing configurations over time: 
o Enable tracking system configurations over time. 
o Create a framework to manage properties like composability and system 

orchestration. 
 

• Evolvability of embedded software: 
o Technology, including automation of engineering and the application of 

integration and orchestration platforms, for keeping systems maintainable, 
adaptable and sustainable considering embedded constraints with respect to 
resources, timing and cost. 

o Embedded software architectures to enable SoS. 
 
 

4.3.5.1. Major Challenge 4: embedding Data Analytics and Artificial 
Intelligence 

 
4.3.5.1.1. State of the art 

For various reasons – including privacy, energy efficiency, latency and embedded intelligence 
– processing is moving towards edge computing, and the software stacks of embedded 
systems need to support more and more analysis of data captured by the local sensors and 
to perform AI-related tasks. As detailed in the Chapter Artificial Intelligence, Edge computing 
and Intelligence on the Edge, non-functional constraints of embedded systems, such as 
timing, energy consumption, low memory and computing footprint, being tamperproof, etc., 
need to be taken into account compared to software with similar functionalities when 
migrating these from cloud to edge. Furthermore, Quality, Reliability, Safety and Security 
Chapter states that key quality properties when embedding of AI components in digitalized 
ubiquitous systems are determinism, understanding of nominal and degraded behaviours of 
the system, their certification and qualification, and clear liability and responsibility chains in 
the case of accidents. When engineering software that contains AI-based solutions, it is 
important to understand the challenges that such solutions introduce. AI contributes to 
challenges of embedded software, but itself it does not define them exclusively, as quality 
properties of embedded software depend on integration of AI-based components with other 
software components. 
For efficiency reasons, very intensive computing tasks (such as those based on deep neural 
networks, DNNs) are being carried out by various accelerators embedded in systems on a chip 
(SoCs). Although the “learning” phase of a DNN is still mainly done on big servers using 
graphics processing units (GPUs), local adaptation is moving to edge devices. Alternative 
approaches, such as federated learning, allow for several edge devices to collaborate in a 
more global learning task. Therefore, the need for computing and storage is ever-increasing, 
and is reliant on efficient software support. 
 
The “inference” phase (i.e. the use after learning) is also requiring more and more resources 
because neural networks are growing in complexity exponentially. Once carried out in 
embedded GPUs, this phase is now increasingly performed on dedicated accelerators. Most 
middle and high-end smartphones have SoC embedding one of several AI accelerators – for 
example, the Nvidia Jetson Xavier NX is composed of six Arm central processing units (CPUs), 
two inference accelerators, 48 tensor cores and 384 Cuda cores. Obtaining the best of the 



 

 

heterogeneous hardware is a challenge for the software, and the developers should not have 
to be concerned about where the various parts of their application are running. 
 
Once developed (on servers), a neural network has to be tuned for its embedded target by 
pruning the network topology using less precision for operations (from floating point down 
to 1-bit coding) while preserving accuracy. This was not a concern for the “big” AI 
development environment providers (e.g., Tensorflow, PyTorch, Caffe2, Cognitive Toolkit) 
until recently. This has led to the development of environments designed to optimise neural 
networks for embedded architectures15: for the move towards the Edge.  
 
Most of the time the learning is done on the cloud. For some applications/domains, making a 
live update of the DNN characteristics is a sought-after feature, including all the risks of 
security, interception. Imagine the consequences of tampering with the DNN used for a self-
driving car! A side-effect of DNN is that intellectual property is not in a code or algorithm, but 
rather lies in the network topology and its weights, and therefore needs to be protected. 
 

 
 
Figure 7 Data analytics and Artificial Intelligence require dedicated embedded hardware architectures 

4.3.5.1.2. Vision and expected outcome 
 
European semiconductor providers lead a consolidated market of microcontroller and low-
end microprocessor for embedded systems, but are increasing the performance of their 
hardware, mainly driven by the automotive market and the increasing demand for more 
performing AI for advanced driver-assistance systems (ADAS) and self- driving vehicles. They 
are also moving towards greater heterogeneity by adding specialised accelerators. On top of 
this, Quality, Reliability, Safety and Security Chapter lists personalization of mass products 
and resilience to cyber-attacks, as the key advantage and the challenge characterizing future 
products. Embedded software needs to consider these and find methods and tools to manage 

 
15 Such as N2D2, https://github.com/CEA-LIST/ N2D2 



 

 

their effects on quality properties of software that integrates them. Also, embedded software 
engineering will need to ensure interoperability between AI-based solutions and non-AI parts. 
 
In this context, there is a need to provide a programming environment and libraries for the 
software developers. A good example here is the interchange format ONNX, an encryption 
format for protection against tampering or reverse engineering that could become the 
foundation of a European standard. Beside this, we also need efficient libraries for 
signal/image processing for feeding data and learning into the neural network, abstracting 
from the different hardware architectures. These solutions are required to be integrated and 
embedded in ECPS, along with significant effort into research and innovation in embedded 
software. 

4.3.5.1.3. Key focus areas 
The key focus areas identified for this challenge include the following: 
 

• Federated and distributed learning: 
o Create federated learning at the edge in heterogeneous distributed systems 

(analysis, modelling and information gathering based on local available 
information). 

o Federated intelligence at the edge (provide context information and 
dependability based on federated knowledge). 

 
• Embedded Intelligence: 

o Create a software AI framework to enable reflecting and acting on the 
systems own state. 

o Dynamic adaption of systems when environment parameters and sensors like 
IoT devices are changing. 

 
• Data streaming in constraint environments: 

o Feed streaming data into low-latency analysis and knowledge generation 
(using context data to generate relevant context information). 

 
• Embedding AI accelerators: 

o Accelerators and hardware/software co-design to speed up analysis and 
learning (e.g. patter analysis, detection of moves (2D and 3D) and trends, 
lighting conditions, shadows). 

o Actual usage-based learning applied to accelerators and hardware/software 
co-design (automatic adaptation of parameters, adaptation of dispatch 
strategies, or use for new accelerators for future system upgrades). 

 
5.3.5.1. Major Challenge 5: support for sustainability by embedded 

software 
 

5.3.5.1.1. State of the art 
 



 

 

The complete power demand in the whole ICT market currently accounts from 5% to 9% of 
the global power consumption17. The ICT electricity demand is rapidly increasing and it could 
go up to nearly 20% in 2030Error! Bookmark not defined.. Compared to estimated power 
consumption of future large data centres, embedded devices may seem to be a minor 
problem. However, when the devices powered by batteries still have a significant 
environmental impact. Energy efficient embedded devices produce less hazardous waste and 
last longer time without need to be replaced. 
 
The growing demand for ultra-low power electronic systems has motivated research into 
device technology and hardware design techniques. Experimental studies have proven that 
the hardware innovations for power reduction can be fully exploited only with proper design 
of the upper layer software. The same applies to software power and energy modelling and 
analysis: the first step towards the energy reduction is complex due to the inter- and intra-
dependencies of processors, operating systems, application software, programming 
languages and compilers. Software design and implementation should be viewed from a 
system energy conservation angle rather than as an isolated process. 
For sustainability, it is critical to understand quality properties of software. These include in 
the first place power consumption, and then other related properties (performance, safety, 
security, and engineering-related effort) that we can observe in the context of outdated or 
inadequate software solutions and indicators of defected hardware. Power reduction 
strategies are mainly focusing on processing, storage, communication, and sometimes on 
other (less intelligent) equipment. 
For the future embedded software developers, it is crucial to keep in touch with software 
development methodologies focused to sustainability, such as green computing movement 
or sustainable programming techniques. In the domain of embedded software, examples 
include the remaining useful life of the device estimation, the network traffic and latency time 
optimization, the process scheduling optimization or energy efficient workload distribution. 
 

5.3.5.1.2. Vision and expected outcome 
 
The concept of sustainability is based on three main principles: the ecological, the economical 
and the social. The ideal environmentally sustainable (or green) software in general requires 
as little hardware as possible, it is efficient in the power consumption, and its usage leads to 
minimal waste production. An embedded software designed to be adaptable for future 
requirements without need to be replaced by a completely new product is an example of 
environmentally, economically, and socially sustainable software. 
To reach the sustainability goal, the embedded software design shall focus also on energy-
efficient design methodologies and tools, energy efficient and sustainable techniques for 
embedded software and systems production and to development of energy aware 
applications and frameworks for the IoT, wearable computing or smart solutions or other 
application domains. 
It is evident that energy/power management has to be analysed with reference to the 
context, underlying hardware and overall system functionalities. The coordinated and 
concentrated efforts of a system architect, hardware architect and software architect should 
help introduce energy-efficient systems (cf. Chapter 2.3, Architecture and Design: Methods 
 
17 https://www.enerdata.net/publications/executive-briefing/between-10-and-20-electricity-consumption-ict-
sector-2030.html 



 

 

and Tools). The tight interplay between energy-oriented hardware, energy-aware and 
resource-aware software calls for innovative structural, functional and mathematical models 
for analysis, design and run-time. Model-based software engineering practices, supported by 
appropriate tools, will definitely accelerate the development of modern complex systems 
operating under severe energy constraints. It is crucial to notice the relationship between 
power management and other quality properties of software systems (e.g., under certain 
circumstances it is adequate to reduce the functionality of software systems by disabling 
certain features, which results in significant power savings). From a complementary 
perspective, when software is aware of the available hardware and energy resources, it 
enables power consumption optimisation and energy saving, being able to configure the 
hardware resources, to activate/deactivate specific hardware components, 
increase/decrease the CPU frequency according to the processing requirements, partition, 
schedule and distribute tasks. 
Therefore, in order to enable and support sustainability through software, software solutions 
need to be reconfigurable in the means of their quality. There have to exist strategies for  
HW/SW co-design and accelerators to enable such configurations. For this to be possible, 
software systems need to be accompanied with models of their quality properties and their 
behaviour, including the relationship between power consumption and other high level 
quality properties. This will enable balancing mechanisms between local and remote 
computations to reduce communication and processing energy. 
Models (digital twins) should be aware of energy use, energy sources and the sustainability 
of the different sources. An example of this in SoS are solar cells that give different amounts 
of energy dependent on daytime and weather conditions. 
 

5.3.5.1.3. Key focus areas 
The following key focus areas have been identified for this challenge: 

• Resource-aware software engineering. 
• Tools and techniques enabling the energy-efficient and sustainable embedded 

software design. 
• Development of energy-aware and sustainable frameworks and libraries for the main 

embedded software application areas (e.g. IoT, Smart Industry, Wearables). 
• Management of computation power on embedded hardware. 

o Management of energy awareness of embedded hardware, embedded 
software with respect to, amongst others,  embedded high-performance 
computing (HPC). 

• Composable efficient abstractions that drive sustainable solutions while optimising 
performance 

o Enabling technologies for the second life of (legacy) cyber-physical systems. 
o Establish relationships between power consumption and other quality 

properties of software systems, including engineering effort (especially in 
cases of computing-demanding simulations). 

o Digital twins can contribute in management quality properties of software 
systems with goal of reducing power consumption, as the major contributing 
factor to green deal, enabling sustainability. 

 
6.3.5.1. Major Challenge 6: software reliability and trust 

 



 

 

6.3.5.1.1. State of the art 
Two emerging challenges for reliability and trust in ECPS relate to computing architectures 
and the dynamic environment in which ECPS exist. The first challenge is closely related to the 
end of Dennard scaling18. In the current computing era, concurrent execution of software 
tasks is the main driving force behind the performance of processors, leading to rise of 
multicore and manycore computing architectures. As the number of transistors on a chip 
continues to increase (Moore’s law is still alive), industry has turned to a heavier coupling of 
software with adequate computing hardware, leading to heterogeneous architectures. The 
reasons for this coupling are the effects of dark silicon19 and better performance-to-power 
ratio of heterogeneous hardware with computing units specialised for specific tasks achieves. 
The main challenges for using concurrent computing systems in embedded systems remain: 
(i) hard-to-predict, worst-case execution time; and (ii) testing of concurrent software against 
concurrency bugs20. 
 
The second challenge relates to the dynamic environment in which ECPS execute. On the level 
of systems and SoS, architectural trends point towards platform-based designs – i.e. 
applications that are built on top of existing (integration and/or middleware) platforms. 
Providing a standardised “programming interface” but supporting a number of constituent 
subsystems that is not necessarily known at design time, and embedding reliability and trust 
into such designs, is a challenge that can be solved only for very specialised cases. The fact 
that such platforms – at least on a SoS level – are often distributed further increases this 
challenge. 
 
On the level of systems composed from embedded devices, the most important topics are 
the safety, security, and privacy of sensitive data. Security challenges involve: (i) security of 
communication protocols between embedded nodes, and the security aspects on the lower 
abstraction layers; (ii) security vulnerabilities introduced by a compiler21 or reliance on third-
party software modules; and (iii) hardware-related security issues22. It is necessary to observe 
security, privacy and reliability as quality properties of systems, and to resolve these issues 
on a higher abstraction level by design23, supported by appropriate engineering processes 
including verification. << link to ch. 2.4>> <<link to ch. 2.3>> 
 
 
18 John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 
62, 2 (February 2019), 48–60. DOI:https://doi.org/10.1145/3282307 
19 Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011. Dark 
silicon and the end of multicore scaling. In Proceedings of the 38th annual international symposium on 
Computer architecture (ISCA '11). Association for Computing Machinery, New York, NY, USA, 365–376. 
DOI:https://doi.org/10.1145/2000064.2000108 
20 F. A. Bianchi, A. Margara and M. Pezzè, "A Survey of Recent Trends in Testing Concurrent Software Systems," 
in IEEE Transactions on Software Engineering, vol. 44, no. 8, pp. 747-783, 1 Aug. 2018, doi: 
10.1109/TSE.2017.2707089. 
21 V. D'Silva, M. Payer and D. Song, "The Correctness-Security Gap in Compiler Optimization," 2015 IEEE 
Security and Privacy Workshops, 2015, pp. 73-87, doi: 10.1109/SPW.2015.33. 
22 Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémentine Maurice, and Daniel Gruss. 2020. 
Take A Way: Exploring the Security Implications of AMD's Cache Way Predictors. In Proceedings of the 15th 
ACM Asia Conference on Computer and Communications Security (ASIA CCS '20). Association for Computing 
Machinery, New York, NY, USA, 813–825. DOI:https://doi.org/10.1145/3320269.3384746 
23 Dalia Sobhy, Leandro Minku, Rami Bahsoon, Tao Chen, Rick Kazman, Run-time evaluation of architectures: A 
case study of diversification in IoT, Journal of Systems and Software, Volume 159, 2020, 110428, ISSN 0164-
1212, https://doi.org/10.1016/j.jss.2019.110428. 



 

 

6.3.5.1.2. Vision and expected outcome 
European industry today relies on developed frameworks that facilitate production of highly 
complex embedded systems (for example, AUTOSAR in the automotive industry). But beyond 
that, platforms with these qualities are exactly what is needed for powering European digital 
infrastructures. 
 
The ambition here is to reach a point where such software system platforms are mature and 
available to a wider audience. These platforms need to enable faster harvesting of hardware 
computing architectures that already exist and provide abstractions enabling innovators and 
start-ups to build new products quickly on top of them. For established businesses, these 
platforms need to enable shorter development cycles while ensuring their reliability and 
providing means for verification & validation of complex systems. The purpose of building on 
top of these platforms is ensuring, by default, a certain degree of trust for resulting products. 
This especially relates to new concurrent computing platforms, which hold promise of great 
performance with optimised power consumption. 
 
Besides frameworks and platforms that enable easy and quick development of future 
products, the key enabler of embedded software systems is their interoperability and 
openess. In this regard, the goal is to develop and make available to a wider audience, 
software libraries, software frameworks and reference architectures that enable 
interoperability and integration of products developed on distributed computing 
architectures. They also need to ensure, by design, the potential for monitoring, verification, 
testing and auto-recovery of embedded systems. One of the emerging trends to help 
achieving this is the use of digital twins. Digital twins are particularly suitable for the 
verification of safety-critical software systems that operate in dynamic environments. 
However, development of digital twins remains an expensive and complex process, which has 
to be improved and integrated as part of the standard engineering processes <<link to ch 2.3 
/ Challenge 2>> 
 
We envision an open marketplace for software frameworks, middleware, and digital twins 
that represents a backbone for the future development of products. While such artefacts 
need to exploit the existing software stacks and hardware, they also need to support correct 
and high-quality software by design. Special attention is required for Digital Twin simulations 
of IoT devices to ensure reliability and trust in operating in real life. 
 
 

6.3.5.1.3. Key focus areas 
Focus areas of this challenge are related to quality aspects of software. For targets such as 
new computing architectures and platforms, it is crucial to provide methodologies for 
development and testing, as well as for the team development of such software. These 
methodologies need to take into account the properties, potentials and limitations of such 
target systems, and support developers in designing, analysing and testing their 
implementations. As it is fair to expect that not all parts of software will be available for 
testing at the same time, it is necessary to replace some of the concurrently executing models 
using simulation technologies. Finally, these achievements need to be provided as commonly 
available software modules that facilitate the development and testing of concurrent 
software. 



 

 

 
The next focus area is testing of systems against unexpected uses, which mainly occurs in 
systems with a dynamic execution environment. It is important here to focus on testing of 
self-adapting systems where one of the predominant tools is the simulation approach, and 
more recently the use of digital twins. 
 
However, all these techniques are not very helpful if the systems are not secure and reliable 
by design. Therefore, it is necessary to investigate platforms towards reliability, security and 
privacy, with the following challenges  
 

• Reliable software on new hardware including edge, fog and cloud processing:  (co) 
verification of distributed, also heterogenous systems  

• Verification and validation of ML models 
 

• Robustness against unexpected uses: 
o Trustworthy, secure, safe, privacy-aware. 
o Validating self-adapting systems for example through  simulation. 

 
• Security and privacy as a service: 

o To become part of the software architecture. 
o Means and techniques for continuous system monitoring and self-

monitoring. 
 

1.3.6. TIMELINE 
 
The following table illustrates the roadmaps for Embedded Software and Beyond. The 
assumption is that topic in the cell means that technology should be ready (TRL 9–10) in that 
timeframe. 
 

MAJOR 
CHALLENGE 

TOPIC SHORT TERM 
(2022-2026) 

MEDIUM TERM 
(2027-2030) 

LONG TERM (2031-2036) 

Major Challenge 
1: 
efficient 
engineering of 
embedded 
software 

Topic 1.1: 
Modelling-
based 
software 
engineering 

Model-based 
software 
engineering 
enabling systems to 
become part of SoS 

Model 
inference to 
enable re-
use of 
existing 
subsystems 
in SoS 

Model-based testing taking 
re-use of uncontrolled SoS 
into account 

Topic 1.2 
Digital 
twinning 

? ? ? 

Topic 1.3: 
Constraint 
environments 

• Resource 
planning 
and 
scheduling 

• Design 
for 

Embedded 
software 
architectures 
to enable SoS 

Exploiting hybrid computer 
platforms, including 
efficient software 
portability 



 

 

software 
evolution 
over time 

Topic 1.4: 
Software 
technology 

• Virtualisa
tion as 
tool for 
efficient 
engineerin
g 

• Technolog
y for safe 
and 
dependabl
e software 
ecosystem
s 

Interface 
management 
enabling 
systems to 
become part of 
SoS 

• Develop new 
software 
architectures for 
edge computing 

• Artificial 
intelligence to 
assist and support 
efforts in software 
engineering 

Topic 1.5: 
Software 
engineering 
tools 

co-simulation 
platforms 

Middleware 
controlling 
dynamically 
embedded 
(mobile) 
hardware 
solutionsCom
pilers and link 
to new 
hardware 

Programming languages for 
developing large-scale 
applications for embedded 
SoS 

Major Challenge 
2: 
continuous 
integration of 
embedded 
software 

Topic 2.1: 
Continuous 
integration 

DevOps 
modelling 
Virtualisation 

Simulation 
on a virtual 
platform 

Digital twin 
Model-based engineering 
based on digital twins 

Topic 2.2: 
Verification 
and validation 

Virtualisation of 
test platform 

Model-based 
testing 

Integration & orchestration 
platforms for IoT and SoS 

Major Challenge 
3: 
lifecycle 
management of 
embedded 
software 

Topic 3.1: 
Rejuvenatio
n of existing 
systems 

• Software 
legacy 
and 
software 
rejuvenati
on 

• Design 
for 
rejuvenati
ng systems 
in a later 
phase 

End-of-life and 
evolving off-
the-
shelve/open 
source 
solutions 

• The cloud-for-
edge 
continuum - 
“Write once, run 
anywhere” on this 
computing 
continuum 

• Composability, 
properties 
contracts and 
orchestration 
systems 

• Interoperability: 
must be ensured in 
integration 
platforms 

   •  
Topic 3.2: 
Managing 
complexity 
over time 

Diagnostics of 
systems in the field 

Continuous 
certification 

Interplay between legacy 



 

 

Topic 3.3: 
Managing 
Configurations 
over time 

? ? ? 

Topic 3.4: 
Evolvability 
of embedded 
software 

Adaptable 
embedded 
software 

Dynamical 
embedded 
software 

• Autonomous 
embedded 
software 

Autonomous processes 
(IoT & edge embedded 
HW/SW co-design) 

Major Challenge 
4: 
embedding data 
analytics and AI 

Topic 4.1: 
Federated 
learning 

Create federated 
learning at the edge 
in heterogeneous 
distributed systems 

Federated 
intelligence at 
the edge 

• Safe, trustworthy 
& explainable AI  

• AI is playing several 
key roles in 
innovation, e.g. as 
a tool for SW 
development/engi
neering 

Embedded intelligence 
 

Topic 4.2 
Embedded 
Intelligence 

? ? ? 

Topic 4.3: Data 
streaming in 
constraint 
environments 

Feed streaming 
data into low-
latency analysis 
and knowledge 
generation 

? ? 

Topic 4.4: 
Embedding AI 
accelerators 

Accelerators and 
hardware/software 
co-design to 
speed up analysis 
and learning 

Actual usage 
based learning 
applied for 
accelerators 
and 
hardware/soft
ware co-design 
 

Use of AI in autonomous 
systems 

 

Major Challenge 
5: 
support for 
sustainability 
by embedded 
software 

Topic 5.1: 
Green-aware 
systems 

? Design for 
green-aware 
products 

? 

Topic 5.2: 
resource-
aware 
software 
engineering 

Integration of 
green-aware in 
software 
integration 

  

Topic 5.3: 
Tools for 
energy 
efficient SW 
design 

Rejuvenation 
technologies 

Design for 
extending 
lifetime 
 

Digital twins that support 
green deal and enable 
sustainability(e.g. contain 
power models) 

Topic 5.4 
:Energery 
aware 
frameworks & 
libraries 

? ? ? 



 

 

Mgmnt 
copmutation 
power on 
embedded HW 

? ? ? 

Composable 
efficient 
abstraction 

? ? ? 

Major Challenge 
6: 
embedding 
reliability and 
trust 

Topic 6.1: 
Reliability of 
software and 
new hardware 

• Code 
coverage 
of 
reliability 
tooling and 
porting 

• Simulation 
and mock-
up based 
approache
s for 
handling 
concurrenc
y 

Embed 
reliability on 
software 
architecture 
level 

• Use of quantum 
computing 

• IoT digital twin 
simulation 

• Validation and 
verification 
through simulation 
and mock-up 
based approaches 
for handling 
concurrency 

Topic 6.2: 
Robustness 
(trustworthy
, secure, 
safe, 
privacy- 
aware) 

• Trustwor
thy, 
secure, 
safe, 
privacy-
aware 

• Testing 
self-
adapting 
systems 
using 
simulation 

Define a 
maturity 
model for 
robustness of 
embedded 
software and 
beyond 

 

Topic 6.3: 
Security and 
privacy as a 
service 

Design for 
security and 
privacy as a 
service 

Architecture 
for security 
and privacy as 
a service 

 

 

1.3.7. SYNERGY WITH OTHER THEMES 
 
Opportunities for joint research projects, including groups outside and within the ECS 
community, can be expected in several sections of the Application Chapters, the Chapters in 
the technology value stack and with cross sectional Chapters. There are strong interactions 
with the System of Systems Chapter. In the System of Systems Chapter, a reasoning model 
for system architecture and design is one of the main challenges. Part of system architecture 
and design is the division in which the system functions will be solved in hardware, and which 
will be solved in Embedded Software and Beyond. Embedded Software can be divided into 
two parts: software enabling the hardware to perform, and software implementing certain 
functionalities. Furthermore, there are connections with the cross-technology Chapters, 
Artificial Intelligence, Edge Computing and Intelligence on the Edge,  Architecture and 



 

 

Design: Methods and Tools, and Quality, reliability, safety and cybersecurity. With respect 
to AI, using AI as a technology and software components powered by AI in embedded 
solutions will be part of the Embedded Software and Beyond Chapter, while innovating AI 
will be part of the AI, Edge Computing and Intelligence on the Edge Chapter, and discussing 
its quality properties will be part of the Quality, reliability, safety and cybersecurity. With 
respect to the Architecture and Design: Methods and Tools Chapter, all methods and tools 
belong there, while Embedded Software and Beyond focuses on development and 
integration methodologies. The challenges of preparing useful embedded solutions will be 
part of the System of Systems Chapter and the Embedded Software and Beyond Chapter. 
The embedded software solutions for new computing devices, such as quantum computing, 
will be part of the Long-Term Vision Chapter. 
 
Related to the Health and Wellbeing chapter, the digital transformation in the healthcare 
industry (see Section 3.4.1) causes software to play an increasingly critical role. More 
systems and devices are connected to the cloud to collect and combine data and provide 
SaaS solutions. At the same time, update cycles become shorter, while product and platform 
lifetimes become longer. These trends lead to the following implications on (embedded) 
software: 

• Cybersecurity is a crucial element in (embedded) software design. 
• The distributed nature of software across the system-edge-cloud continuum needs 

non-conventional software design and test strategies. 
• Wearable devices often require energy-efficient software design 
• Shorter release cycles require a higher level of efficiency and automation in the soft-

ware engineering process, while maintaining the quality standard that is expected in 
safety-critical systems. 

• Legacy code becomes a growing challenge in larger health equipment. 

 


