

Pilot lines in the Chips Act

Christophe Wyon, Carlo Reita, Jean-René Lequepès, CEA-Léti Christoph Kutter, Harald Kuhn, Patrick Bressler, FhG Jo De Boeck, Anne Van den bosch, imec

General aspects of the Chips for Europe Pilot lines

European technology and innovation leadership

The goal of the Chips for Europe Initiative is to support large-scale technological capacity building and innovation throughout the Union to enable the development and deployment of cutting-edge and next generation semiconductor and quantum technologies that will reinforce the Union's advanced design, systems integration, chips production capabilities and skills, including emphasis on start-ups and scale-ups.

Pilot lines key outcomes

Key outcomes

Sustain a **product and service innovation pipeline** at the level of tools, products and services, supported by European manufacturing in advanced and leading-edge semiconductor technology.

Infrastructure for **innovative and disruptive idea validation** on all aspects of the value chain (materials, equipment, manufacturing, device, circuit, key functional systems).

IP, knowledge transfer to European industry, scale-ups and start-ups. Allowing for **early prototyping and demonstration** and building the value chain to production.

Building a strong **European workforce**, through concerted actions through all segments of education, including programmes for retraining professionals.

Making Europe an **attraction pole for talent**, **innovation and investors**, leading to a grown or regained position in all aspects of the semiconductor value chain.

umec

European RTO alliance

unec

cea leti

🗾 Fraunhofer

Pan-European alliance For European Technology and Innovation Leadership

Research Fab Microelectronics Germany (FMD) Facts & Figures

I I institutes fromFraunhofer2 institutes from Leibniz

Approx. **4,500** employees with **2,635** scientists

560 m EUR Budget

umec

200 m EUR projects/industry
 235 m EUR projects/public funding
 125 m EUR basic funding

2.200 tools/equipment in 13 cleanrooms

2.2 bn EUR assets / investment

Design (down to 10/12 nm) Wafer Processing: GaAs/InP (4"), SiC (6") Si, SiGe, GaN (8"), Si (12") Advanced Packaging up to 12"; 600 mm panel System Integration Test & Characterization

WORLD-CLASS INFRASTRUCTURE > 12,000 M² CLEANROOM CAPACITY

MORE THAN 5,000 SKILLED PEOPLE FROM OVER 95 NATIONALITIES

CEA-LETI

Fraunhofer

Forschungsfabrik Mikroelektronik

MIKROELEKTRONIK

leti

່ເກາຍເ

AT A GLANCE

CO.

Grenoble (FR)

- Founded in 1967
- France, USA, Japan
- > 2,760 Patents in Portfolio
- 350 Industrial Partners
- > 65 Startups Created
- 10,000 m² Cleanroom 200-300mm
- 315 M€ Budget 85% from R&D contracts

Pan European Pilot Line Facility – Categorizing pilot lines

Definition: RTO Pilot Lines and Industrial Pilot Lines

RTOs Pilot Line	s "Innovation Push"	Industrial Pilot Lines "Scale Up"
Exploratory Services (lower TRLs)	Small Scale Production (mid to high TRLs)	First Industrial Deployment (highest TRLs)
 Delivery of Prototypes Basic architectures and feasibilities for products at an early stage (e.g. for proof-of-concept) Processes are far from final maturity PDK* drafted, initial models in place 	 Delivery of small volume Technology and Processes can already be used for prototypes and products Technology frozen, customer specific adaptations possible PDK* available Small scale production capacity available (industrial grade) 	 First delivery of qualified Products Technology, Processes and Production Methodology under evaluation Up-scaling of a R&D project Yield still to be improved, thus, no competitive production possible yet PDK* finalized
RTOs Research		Industry Production

* PDK: process design kit, model of the fabrication process to be used for the chip design

່ເກາຍເ

A balanced and phased approach for innovation in mature and leading edge semiconductor technology.

European Pilot Line innovation network

leti

Profiling the contribution from the leading RTOs

່ເກາຍເ

THE PREVAIL PROJECT AND VISION

- The partners in the platform provide a set of 300mm technologies, open to any user, in order to fabricate prototype Edge AI chips (a few units) required by the user for non commercial purposes.
- Proposals are examined by the partners to verify feasibility, cost and delay.
- Proposals can come via DIH, KDT projects, directly.
- IP necessary for the execution and originating from the user remains his property and partners have access only for execution. The IP originating from the partners remains their property and, if necessary for exploitation, non-exclusive licenses will be provided. IP generated during the execution is property of the inventor.
- The user receives the prototypes and test them in its field of application.

umec

FD-SOI 10nm

FD-SOI ideally suited for key markets European FD-SOI ecosystem is a powerful engine of value creation

Mikroelektronik

umec

ECS Brokerage event| Christophe Wyon | February 8th 2023

FD-SOI NEXT GEN (10-7 nm) pilot line

Forschungsfabrik Mikroelektronik

FD-SOI NEXT GEN Roadmap

umec

FD-SOI NEXT GEN Roadmap to 10-7nm

ECS Brokerage event| Christophe Wyon | February 8th 2023

FD-SOI NEXT GEN: transition to GAA

Y

FD-SOI NEXT GEN Roadmap

Performance booster thanks to higher W_{eff}/footprint ratio

- C Evolution of both FinFET and FD-SOI
- C Flexibility performance/power
- C Built on as follow-up of FD-SOI on the modules developed jointly in the advanced line in the earlier period.

Leading edge and advanced semiconductor techology

Pan-European Pilot line structure

'full-stack' innovation

CREATE the market and demand in Europe

SECURE European IP and technology leadership

ENSURE European leadership on equipment and materials

C(X)

Potential roadmap extension

2018	2020	2022	2024	2026	2028	2030	2032	2034	2036
N7	N5	N3	N2	A14	A10	A7	A5	A3	A2
							entinued	limensiens	l colina
							ontinuea d	limensiona	i scaling
Metal Pitch 40 [nm]	28	22	21	18	16	16-14	16-12	16-12	16-12
						De	vice and m	aterial inno	vations
Metal Tracks 7	6	6	6	5	5	5	4	<4	<4
- H	II								
FinFET	FinFET	FinFET	GAA Nanosheet	GAA Nanosheet	GAA Forksheet	GAA Forksheet	CFET	CFET	CFET Atomic
							Contoxt	ware intere	oppost
							Context-a	ware interc	onnect
									5
			52.0	100 M					
	1	Fra	unhofer						
່ເກາຍເ		MIK	ROELEKTRONIK						

ECS Brokerage event | Jo De Boeck | February 8th 2023

System-technology co-optimisation

Pan-European Pilot line structure

ECS Brokerage event | Jo De Boeck | February 8th 2023

Enabling functional demonstration for various application domains

Driving innovation for net-zero emission.

semiconductor value chain to jointly target net-zero emissions

ECS Brokerage event | Jo De Boeck | February 8th 2023

Advanced Heterogeneous System Integration

Advanced Heterogeneous System Integration

- Challenges in our modern world need new functionalities, new technologies and new applications
- Moore's law will be "carried" by heterogeneous integration
- Heterogeneous integration offers the possibility of re-assembling different technologies
- New functionalities become possible by new packaging technologies
- Packaging technologies use more and more frontend equipment (Scanners, CMP, ...)
- The value add of packaging increases tremendously
- There are limited manufacturing possibilities in Europe which would process low-mid packaging volumes
- A new approach to packaging, involving the value chain, is needed

Fraunhofer – Heterogeneous Integration From Wafer Level System Integration to Panel Level System Integration

< 5 µm ... 100 µm

Wafer Level Packaging (WLP)

Technology: Based on thin film materials & equipment Wafer size: ... up to 300 mm Input: CMOS / III/V / WBG wafers **Output:** 2.5D/3D integrated systems or system components

Panel Level Packaging (PLP)

Technology: Based on PCB materials & equipment Panel size: up to 610 x 456 mm² Input: CMOS / III/V / WBG dies (w/ bumping) **Output:** Packaged/embedded modules

FMD Pilot Line – Advanced Heterogeneous System Integration Low Volume Production – High Quality High Value Chips

Markets, FMD Pilot Line – Advanced Heterogenous System Integration (AHSI) Customers, Application Industry Module Module Automotive **Module Next Generation Chip-Design Advanced Packaging** Aerospace Power IDMs and Design Enablement Multiple materials / Foundries components / subsystems Circuit Design Health **Module Advanced Silicon** High precision assembly Energy Design for System Solutions Consumer Integration High density substrates . . . Chiplets Module RF / Module **Optoelectronics** Characterization, **Test & Reliability**

leti

umec

Fraunhofer 🖉

MIKROFI FKTRONIK

36

FMD Pilot Line – Advanced Heterogeneous System Integration

Interaction with partner technologies

umec

Summary

Pan European Pilot Line Facility – New value to the Innovation System

Win-Win-Win towards a long-term advantage for Europe

Stakeholder	Value Offering
Chip foundries	 Predevelopment of technology modules Access to design services to create foundry business Outsource handling of prototype runs / small volume business
Integrated Device Manufacturers	 R&D services, focus on transferability into commercial production lines Use of advanced heterogeneus system integration for creating new products and business offerings Options for insourcing of high innovative products with volume forecast Design services for IDM's new chips
Semiconductor Customer	 Easy access to specialized technologies for high complexity products Use of advanced heterogenous system integration for creating new products and business offerings Proof of Concept, demonstrators with high TRL / low volume production, Scale up into commercial technologies commensurate with market growth
Research Community	 Access to extended technology capabilities in research cooperation Support of transfer of research results into applications
Start-up	 Access to special technology Prospect to create technology start-up without own cleanroom

Semiconductor Customer: building products based on semiconductors Semiconductor Manufacturer / Semiconductor FABs: design up to production of semiconductors

umec

MIKROELEKTRONIK

Forschungsfabrik Mikroelektronik

່ເກາຍເ

leti ceatech

